
BeadStudio User Guide

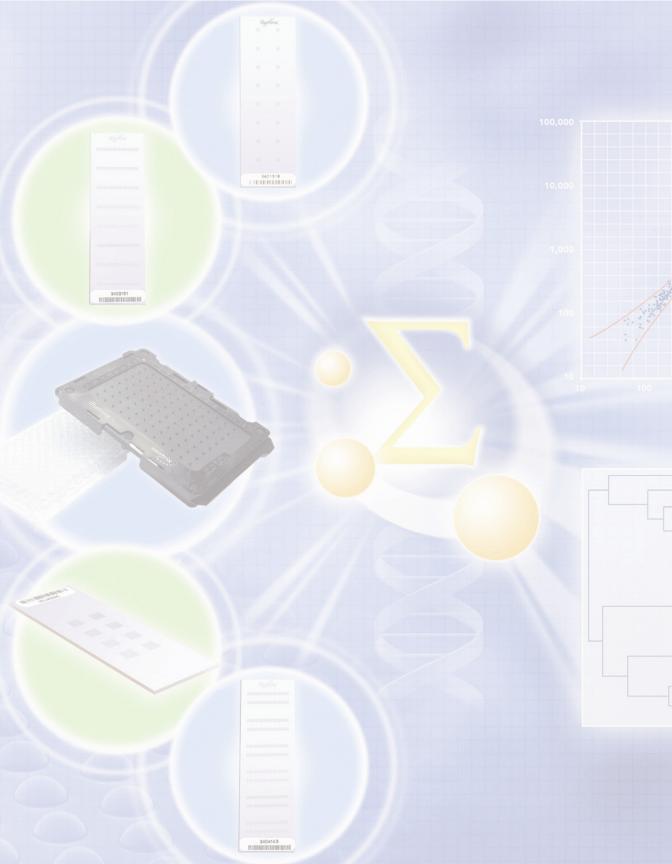
Data Analysis Software for Use with Illumina Gene Expression Products

Notice

This publication and its contents are proprietary to Illumina, Inc., and are intended solely for the contractual use of its customers for no other purpose than to operate the system described herein. This publication and its contents shall not be used or distributed for any other purpose and/or otherwise communicated, disclosed, or reproduced in any way whatsoever without the prior written consent of Illumina, Inc.

For the proper operation of this system and/or all parts thereof, the instructions in this guide must be strictly and explicitly followed by experienced personnel. All of the contents of this guide must be fully read and understood prior to operating the system or any of the parts thereof.

FAILURE TO COMPLETELY READ AND FULLY UNDERSTAND AND FOLLOW ALL OF THE CONTENTS OF THIS GUIDE PRIOR TO OPERATING THIS SYSTEM, OR PARTS THEREOF, MAY RESULT IN DAMAGE TO THE EQUIPMENT, OR PARTS THEREOF, AND INJURY TO ANY PERSONS OPERATING THE SAME.


Illumina, Inc. does not assume any liability arising out of the application or use of any products, component parts or software described herein. Illumina, Inc. further does not convey any license under its patent, trademark, copyright, or common-law rights nor the similar rights of others. Illumina, Inc. further reserves the right to make any changes in any products, or parts thereof, described herein without notice.

DASL, GoldenGate, Illumina, Infinium, and Sentrix are trademarks of Illumina, Inc. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners.

© 2004, 2005 Illumina, Inc. All rights reserved.

Revision History

Revision Letter	Release Date
A	12-1-04
В	3-18-05

Contents

Chapter 1 Overview

Introduction	2
BeadStudio Terminology	4
Install BeadStudio	5
Start BeadStudio	8
Content Descriptor File	9

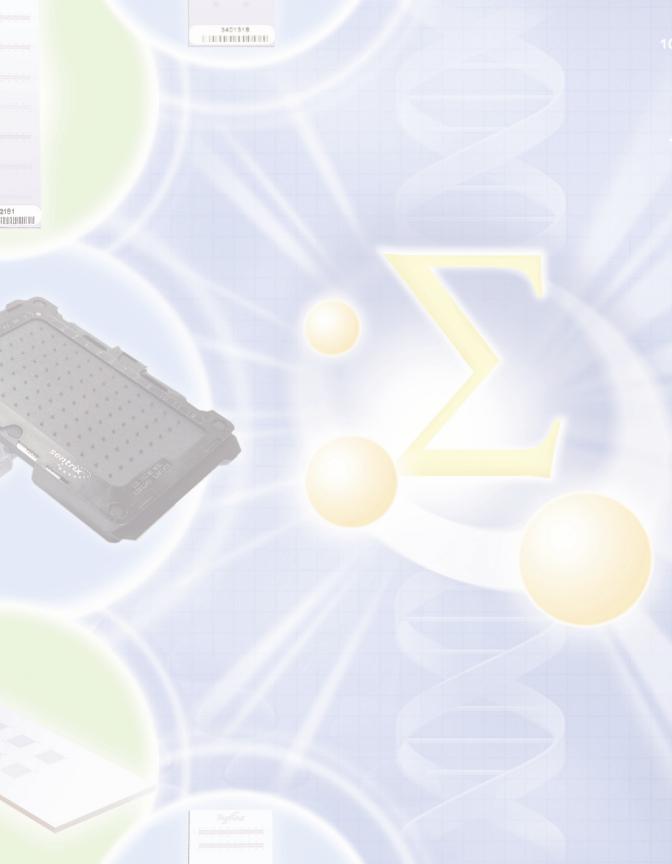
Chapter 2 Experiment Creation & Analysis

Introduction
Processing Experiments
Process an Experiment Using the New Experiment Wizard2-4 Populating Groups2-8 Removing Groups2-11 Analyzing Gene Expression Data2-12 Viewing Your Data2-17
Process an Experiment Outside the Wizard: Using the
BeadStudio Main PageBeadStudio Main Page
Analyzing Gene Expression Data
Re-Launching the New Experiment Wizard 2-22
Saving Current Experiment & Loading Saved Experiments 2-23
Viewing Your Data
Shortcut Tools for Defining Experiments 2-25
Set Up & Apply Group Layout Files
Set Up & Apply Sample Sheet
Gene Analysis Output Files 2-32
Creating the Mask File 2-40
Browse History
Clear or Copy Message Log Feature

Chapter 3 Data Visualization

Introduction
Accessing the Data Visualization Tools
From the New Experiment Wizard
From the BeadStudio Main Page
Scatter Plots
Scatter Plot Context Menu Functions
Finding Genes in the Scatter Plot
Data Tab 3-23
Manifest Tab
Ontology Tab
Other Scatter Plot Functionalities
Cluster Analysis 3-28
Similarities and Distances
Analyze Clusters
Dendrogram Context Menu Selections
View the Sub-Tree List Directly in the Dendrogram
Copy/Paste Clusters
From Scatter Plot to Dendrogram
From Dendrogram to Scatter Plot
Control Summary Reports 3-40
Control Summary Reports for DirectHyb
Control Summary Reports for the DASL ^{m} Assay
Viewing Control Reports

Chapter 4 Image Viewing


Introduction	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 4	-2
Using the Image Viewer	• •	• •	•	•	•	• •	• •		•	•	•	•	•	•	•		•	•			•	. 4	-3
Overlay Cores		• •		•	•	• •	•		•	•	•	•	•	•	•		•	•			•	. 4	-7
Image Appearance Control.		•					•															. 4	-8

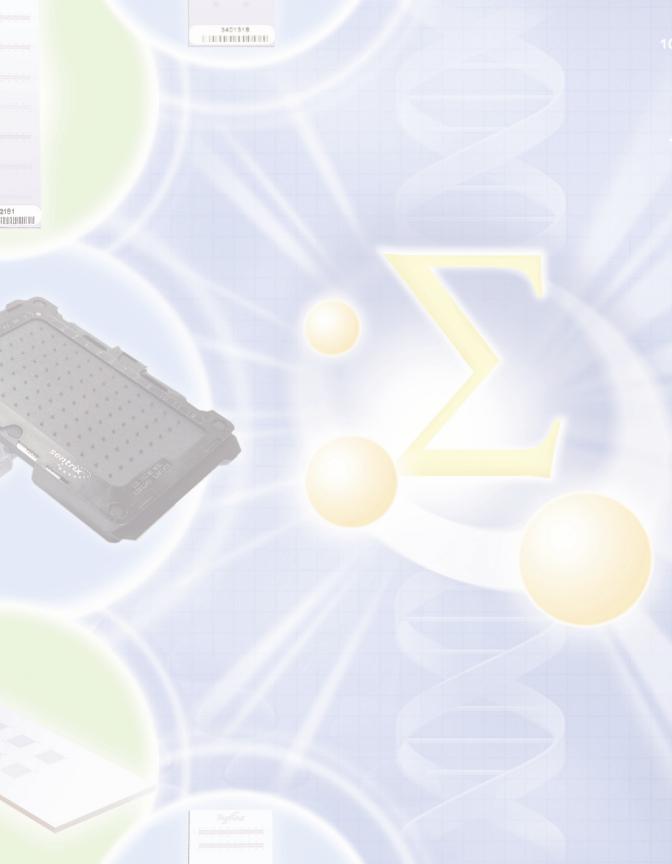
Chapter 5 Screen Elements

BeadStudio User Interface Screen Elements	. 5-2
BeadStudio Example Screens	. 5-7

Chapter 6 Normalization & Differential Analysis Algorithms

Introduction
A Non-Mathematician's Guide
Normalization Methods
Definitions
Background Method
Average Method6-4
Cubic Spline Method6-5
Hyb Controls Method6-6
Rank-Invariant Method
Normalization Algorithms
Background6-8
Average
Cubic Spline
Hyb Controls
Rank Invariant
Differential Expression Algorithm
Illumina Custom 6-11
Mann-Whitney
T-test
Detection Score
Whole Genome BeadChips
Focused Array & DASL Products

Figures


Figure 1-1	Gene Expression Analysis Process Flow
Figure 1-2	BeadStudio Wizard Welcome Screen
Figure 1-3	Select Installation Folder Screen
Figure 1-4	Confirm Installation Screen
Figure 1-5	Installing BeadStudio Screen1-7
Figure 1-6	Installation Complete Screen
Figure 1-7	BeadStudio Application Icon on Your PC Desktop1-7
Figure 1-8	Welcome Screen1-8
Figure 2-1	Welcome - Start New Experiment Wizard
Figure 2-2	BeadStudio Experiment Wizard Welcome Page
Figure 2-2 Figure 2-3	Location Page
Figure 2-3	Samples Page
Figure 2-4	Groups Pane
Figure 2-5	Drag and Drop Samples into a Group
Figure 2-0	Single-Sample per Group
Figure 2-7	Analysis Page 2-12
Figure 2-0	DASL Mode Analysis Page
Figure 2-10	Output Parameters Page 2-15
Figure 2-11	How do you want to view your data? Dialog Box
Figure 2-11 Figure 2-12	Welcome - Start in the BeadStudio Main Page
Figure 2-12	BeadStudio Main Page
Figure 2-13	Main Page Experiment Parameters Dialog Box
Figure 2-14	Main Page Output Data Selection Dialog Box
Figure 2-15	Analysis Mode Selected from the Menu Bar
Figure 2-17	Re-Launch New Experiment Wizard
Figure 2-17 Figure 2-18	Save or Save As
Figure 2-19	Open Experiment 2-23
Figure 2-20	Visualize Data from the Menu Bar
Figure 2-20	Visualize Data from the Toolbar
Figure 2-21 Figure 2-22	Group Layout File Example
Figure 2-22 Figure 2-23	Open Pop-Up 2-25
Figure 2-23 Figure 2-24	Groups Displayed per Applied Group Layout File
i iyule 2-24	σι σαρε στεριαγεία μετ Αρριτεία στουρ μαγούτητε

Х

Figure 2-25	Sample Sheet Examples
Figure 2-26	Open Sample Sheet Pop-Up 2-31
Figure 2-27	Missing Sample Sheet Data Files Warning Message
Figure 2-28	Example XXXXXX_gene_profile File
Figure 2-29	Example XXXXXX_gene_probe_profile File
Figure 2-30	Example XXXXXX_gene_diff File 2-36
Figure 2-31	Example XXXXXX_qcinfo File for Group Gene Analysis
Figure 2-32	Browse History Pulldown List
Figure 2-33	Message Pane Clear/Copy Button
-	
Figure 3-1	How do you want to view your data? Dialog Box
Figure 3-2	Tools Menu
Figure 3-3	Browse to the Data File
Figure 3-4	Start scatter plot and Start cluster analysis Tool Bar Buttons \ldots 3-5
Figure 3-5	Scatter Plot Source Data Dialog Box
Figure 3-6	Source Data Dialog Box for Differential Analysis
Figure 3-7	Scatter Plot
Figure 3-8	Scatter Plot Tools Menu
Figure 3-9	Scatter Plot Context Menu
Figure 3-10	Find Genes Tool Selected 3-19
Figure 3-11	Find Genes Dialog Box
Figure 3-12	Zoom in to See Selected Genes
Figure 3-13	Gene Properties: Window Data Tab
Figure 3-14	Gene Properties: Window Data Tab
Figure 3-15	Gene Properties: Window Manifest Tab 3-25
Figure 3-16	NCBI Website
Figure 3-17	NCBI Record
Figure 3-18	Gene Properties: Ontology Tab 3-27
Figure 3-19	Dendrogram, Similarity Example
Figure 3-20	Dendrogram, Showing Nodes 3-30
Figure 3-21	Cluster Analysis Dialog Box 3-31
Figure 3-22	Dendrogram
Figure 3-23	Dendrogram with Context Menu
Figure 3-24	Zoom in to View Sub-Tree List 3-35
Figure 3-25	Select Region
Figure 3-26	Copy & Paste
Figure 3-27	Select Sub-Tree

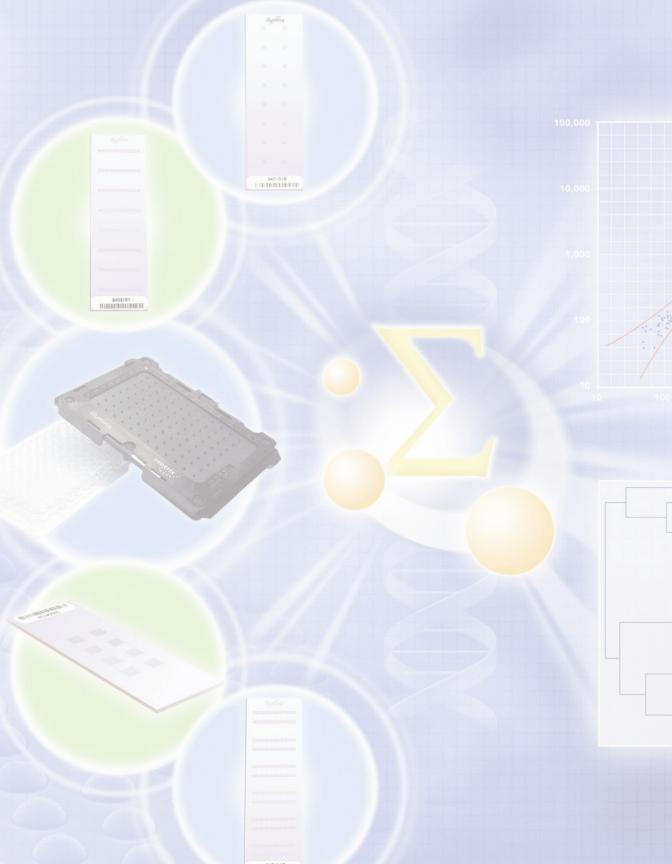

]

Figure 3-28	Copy & Paste
Figure 3-29	Control Summary Report 3-40
Figure 3-30	Housekeeping Controls Secondary Graph 3-41
Figure 3-31	Control Summary Context Menu 3-42
Figure 3-32	Control Summary Reports 3-43
Figure 3-33	Contamination Controls Secondary Graph 3-44
Figure 3-34	Control Summary Context Menu 3-45
Figure 4-1	Right-Click any Sample to Activate Image Viewer4-3
Figure 4-2	Sample Image
Figure 4-3	Overlay Cores Image
Figure 4-4	Image Control Pane Detail
Figure 5-1	Extracted Intensity Samples Shown in Tan
Figure 5-2	Unimaged Samples Shown as Speckled
Figure 5-3	Extracted Intensities, Problem Samples in Gray5-8
Figure 6-1	Sample A & Sample B6-6

Tables

Table 1-1	BeadStudio Terminology 1-4
Table 1-2	Wizard Option Descriptions 1-9
Table 2-1	Sample Sheet Guidelines
Table 2-2	Output File Descriptions
Table 2-3	gene_profile Column Descriptions 2-34
Table 2-4	gene_diff Column Descriptions
Table 2-5	qcinfo Column Descriptions
Table 3-1	Scatter Plot Control Panel Descriptions
Table 3-2	Scatter Plot Tools Menu Item Descriptions
Table 3-3	Scatter Plot Context Menu Item Descriptions
Table 3-4	Dendrogram Context Menu Descriptions
Table 4-1	Image Viewer Features
Table 5-1	BeadStudio User Interface Screen Elements 5-2
Table 5-2	Color Key for Displayed Samples 5-7

Chapter 1

Overview

Topics

- ▶ Introduction 1-2
- BeadStudio Terminology 1-4
- Install BeadStudio 1-5
- Start BeadStudio 1-8

Introduction

The BeadStudio software package included with your Illumina[®] Gene Expression System is a tool for analyzing gene expression data from scanned microarray images collected from the Illumina BeadArray Reader. Resulting BeadStudio files can be used by most standard gene expression analysis programs.

BeadStudio executes two types of data analysis:

Gene Analysis

Quantifying gene expression signal levels

Differential Analysis

Determining if gene expression levels have changed between two experimental groups

You can perform these analyses on individual samples or on groups of samples treated as replicates.

BeadStudio reports experiment performance based on built-in controls that accompany each experiment.

In addition, BeadStudio provides scatter-plotting and dendrogram tools, facilitating quick, visual means for exploratory analysis.

This chapter describes the BeadStudio software, presents guidelines for evaluating experiment quality, and defines BeadStudio-related terminology.

Wherever this symbol appears, a special note for the Illumina[®] DASL^m Assay appears in the text.

Figure 1-1 illustrates the gene expression analysis process flow.

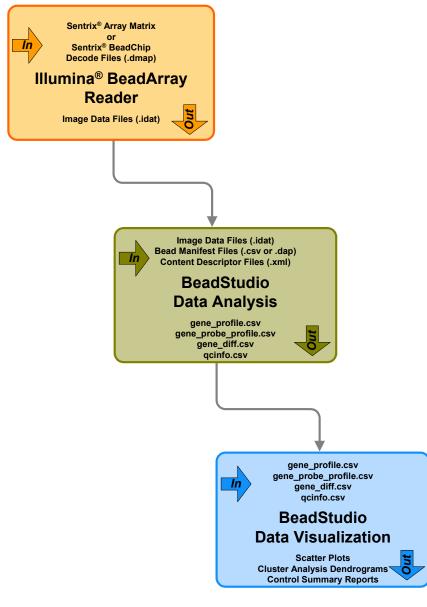


Figure 1-1 Gene Expression Analysis Process Flow

BeadStudio Terminology

Terms used in this chapter are listed and defined below.

Table 1-1BeadStudio Terminology

Term	Definition
	The collection of probe sequences represented on a SAM or BeadChip.
Content Descriptor	DASL™ Assay For the DASL Assay, content descriptor refers to the collection of probe sequences in the oligo pool.
Background	An estimate of signal produced by all sources except specific binding of target to probe. This estimate is established by averaging the signal of a large number of negative control probes.
	A collection of beads carrying identical probe sequences
Bead Type	DASL™ Assay The DASL Assay uses universal SAMs and BeadChips. Bead Type refers to a collection of beads carrying identical address sequences.
Control category	A group of probes and/or targets with a common functional role (see description of particular control categories)
Error model	A statistical model used to determine p-values for differential expression
Experiment	A collection of groups of samples representing a biological study
Experiment file	An XML file listing group membership and experimental parameters
Group	Samples combined according to some experimental criteria
Normalization	The mathematical process of adjusting intensity values in order to improve the quality of data comparison among samples
Probe	A 50mer oligonucleotide designed to be complementary to a particular target sequence. Probes are immobilized on the surface of glass beads randomly assembled into the SAM or BeadChip. Hybridization of probes provides intensity values for analysis of target abundance. For the DASL Assay, a probe refers to the oligo sequences that hybridize to cDNA target sequences. These oligos also contain address sequences that hybridize to sequences immobilized on the surface of glass beads randomly assembled into a universal SAM or BeadChip. Hybridization of DASL Assay products provides intensity values for analysis of target abundance.
Reference group	A group to which other experimental groups are compared during differential analysis
Repository	A folder on your computer or network where scanned SAM or BeadChip images and raw intensity files are stored

Install BeadStudio

Follow the steps below to properly install the BeadStudio application.

- 1. Double-click on "setup.exe" in the BeadStudio directory of the Installation CD you received with your system and follow the onscreen instructions.
- The installation process will install the Microsoft .NET Framework on your system if it has not already been installed. Installation of the .NET Framework requires administrative privileges and may take several minutes.

The BeadStudio Setup Wizard will guide you through the installation process (Figures 1-2 thru 1-7).

🖟 BeadStudio 📃 🗖 🔀		
Welcome to the BeadStudio Setup Wizard		
The installer will guide you through the steps required to install BeadStudio on your computer.		
WARNING: This computer program is protected by copyright law and international treaties. Unauthorized duplication or distribution of this program, or any portion of it, may result in severe civil or criminal penalties, and will be prosecuted to the maximum extent possible under the law.		
Cancel < Back Next >		

Figure 1-2 BeadStudio Wizard Welcome Screen

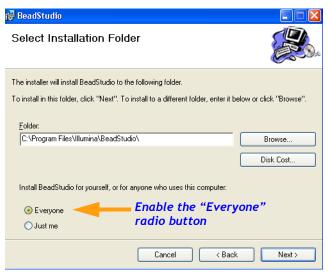


Figure 1-3 Select In:

Select Installation Folder Screen

👹 BeadStudio		
Confirm Installation		
The installer is ready to install BeadStuc	lio on your computer.	
	Cancel < Back	Next >

Figure 1-4 Confirm Installation Screen

🙀 BeadStudio			
Installing BeadStudio			
BeadStudio is being installed.			
Please wait			
	Cancel	< Back	Next >

Figure 1-5 Installing BeadStudio Screen

🙀 BeadStudio	
Installation Complete	
BeadStudio has been successfully installed.	
Click "Close" to exit.	
Please use Windows Update to check for any critical updates to the .NET Framew	ork.
Cancel < Back	Close

Figure 1-6 Installation Complete Screen

3. The BeadStudio application icon (Figure 1-7) now appears on your PC desktop.

Start BeadStudio

- 1. On your PC desktop, double-click the BeadStudio icon to start the application.
- 2. Select wizard and mode:
 - a. At the **Welcome** screen (Figure 1-8), click the appropriate radio buttons in the **What would you like to do?** pane. Table 1-2 describes the options.

Welcome		
Welcome to Illumina's BeadStudio.		
What would you like to do?		
O Start the New Experiment Wizard		
○ Visualize existing data		
 Start in the BeadStudio main page 		
Analysis Mode		
⊙ DirectHyb O DASL		
OK Cancel		
Figure 1-8 Welcome Screen		

Option	Description
Start the New Experiment Wizard	
Start the Visualize Existing Data Wizard	
Start in the BeadStudio Main Page	
	 b. If you have purchased both the <i>DirectHyb</i> and <i>DASL™ Gene Expression Systems</i>, the Analysis Mode pane displays a choice. Click the radio button to select your mode (see Figure 1-8). If you have purchased only one of these systems, the Analysis Mode pane will be grayed out and the appropriate mode will be automatically selected. 3. Click OK.
Content Descriptor File	The BeadStudio application uses a Content Descriptor file (.xml) to map BeadTypes to targets. Illumina provides this file on a CD that you receive with each Sentrix Array Matrix or BeadChip.

Table 1-2Wizard Option Descriptions

NOTES	

Doc. # 11179632 Rev. B

1.800.809.ILMN (1.800.809.4566) or +1.858.202.4566 (outside North America) www.illumina.com

Chapter 2

Experiment Creation & Analysis

Topics

- Introduction 2-2
- Processing Experiments 2-3
 - Process an Experiment Using the New Experiment Wizard 2-4
 - Process an Experiment Outside the Wizard: Using the BeadStudio Main Page 2-18
- Shortcut Tools for Defining Experiments 2-25
 - Set Up & Apply Group Layout Files 2-25
 - Set Up & Apply Sample Sheet 2-28
- Creating the Mask File 2-40
- Browse History 2-41
- Clear or Copy Message Log Feature 2-41

Introduction

Using the intensity files produced by the BeadArray Reader, BeadStudio's *Gene Analysis* tool produces output files containing:

- Probe and gene lists
- Associated hybridization intensities (normalized or raw)
- Information about the system controls

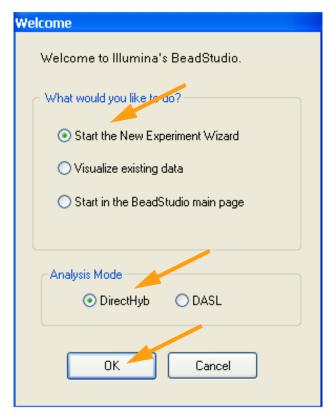
If desired, BeadStudio's *Differential Analysis* tool can produce output files determining the probability that a gene's signal has changed between two samples or groups of samples.

Using these output files, BeadStudio's *Data Visualization* tools can create more sophisticated plotting analyses such as Scatter Plots, Cluster Analysis Dendrograms, and Control Summary Graphs.

To produce the BeadStudio output files, you first define an experiment. In a BeadStudio experiment, you define the samples used and their grouping (sample sets that can be compared against each other for the purpose of identifying gene expression differences).

To define your experiment, first specify your groups, then assign samples to them. In the simplest experiment, each group will have only one sample. However, if your experiment includes replicate samples, you can assign these to the same group. Within a group, BeadStudio will average the values for each gene across the samples, and its algorithms will automatically take advantage of the replicates' statistical power to provide more sensitive determination of detection and differential expression.

Processing Experiments


The next two sections, Process an Experiment Using the New Experiment Wizard (page 2-4) and Process an Experiment Outside the Wizard: Using the BeadStudio Main Page (page 2-18), provide step-by-step instructions on how to:

- Define an experiment
- Create groups
- Select normalization and differential expression options
- Select fields for, then generate output files
- Plot and cluster output file data

The New Experiment Wizard guides you through the process; the BeadStudio Main Page allows you to carry out the same functions in a less structured format. See Table 1-2, *Wizard Option Descriptions* on page 1-9 for more information.

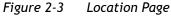
Process an
Experiment Using the
New Experiment
Wizard1. After starting the BeadStudio application (see Start
BeadStudio on page 1-8), at the Welcome screen What
would you like to do? pane, select the radio button for Start
the New Experiment Wizard (Figure 2-1).

2. At the **Analysis Mode** pane, click the radio button to select the appropriate mode.

3. Click OK.

4. At the BeadStudio Experiment Wizard Welcome Page (Figure 2-2), click **Next**.

BeadStudio Experiment Wizard - Welcome Page		
BeadStudio Gene Expression Experiment Wizard New Experiment Wizard Welcome Page		
This wizard will guide you through the steps of creating a Gene Expression Experiment for BeadStudio.		
A BeadStudio Gene Expression Experiment consists of a set of samples that have been grouped together for analysis, along with the appropriate analysis parameters.		
The process of creating an experiment begins with selecting a name and directory for your experiment.		
The next step is to select your samples and group them together. This can be done manually, or using a sample sheet.		
You will then need to specify whether you will be doing a regular gene expression experiment or a differential gene expression analysis. A differential analysis looks for differential expression relative to a reference group.		
Finally, you will specify the format of your output files.		
Cancel < Back Next > Finish		
Cancel < Back Next > Finish		


Figure 2-2 BeadStudio Experiment Wizard Welcome Page

- 5. At the Location Page (Figure 2-3):
 - a. Enter a name for your experiment in the New Experiment Name field.
 - b. Enter or browse for the location to which you want to save your experiment.

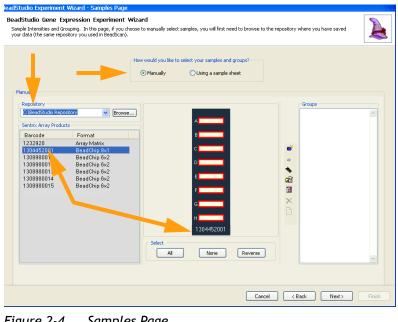
Although not required, Illumina recommends storing all your experiments in a common location on your local hard drive or network.

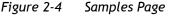
BeadStudio Experiment Wizard - Location Page
BeadStudio Gene Expression Experiment Wizard New Experiment Name and Location
New Experiment Name Brain vs Liver - April 27, 2005 Experiment Directory C:\BeadStudio Repository Browse
Experiment will be created in: C:\BeadStudio Repository\Brain vs Liver - April 27, 2005
Cancel < Back Next > Finish

6. Click Next.

7. At the Samples Page (Figure 2-4), in the How would you like to select your samples and groups? pane, click the radio button next to your choice.

NOTE:


This section describes the manual method for selecting samples and groups. Optionally, you can also use the Sample Sheet and Group Layout file to help create your experiments in BeadStudio. You can create these files using the example templates provided on your BeadStudio CD, Illumina part # 11182401, provided with your system.

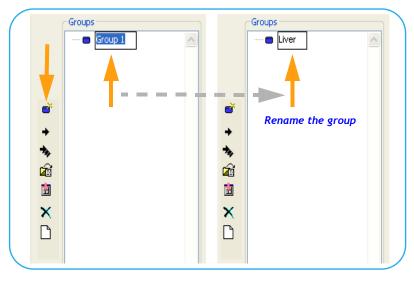

You can also use the Bead Manifest file (optionally) to include more annotated data in your analysis. This file resides on the CD you received with your BeadChips or SAMS.

For the DASL Assay, this file resides on the CD you received with your oligo pool (DAP).

For information on using Sample Sheets, see Set Up & Apply Sample Sheet on page 2-28.

- 8. In the **Repository** pane, enter or browse to the directory in which you have your images and raw data files from the BeadArray Reader.
- 9. Click on a barcode in the **Select Barcodes** pane to display that BeadChip or SAM in the middle pane.

Populating Groups


This section describes the four methods for populating groups:

- Standard Method (see below)
- Single-Sample per Group (see page 2-11)
- Sample Sheet Method (see page 2-11)
- Group Layout Method (see page 2-11)

Standard Method

- 1. From the displayed BeadChip or SAM, select the samples you want in your groups.
 - Selected samples are outlined in red
 - Initially, all samples are selected
 - To de-select samples, click None in the Select pane
 - To select an individual sample, click it
 - To select multiple samples, Ctrl-click each desired sample
- 2. At the **Groups** toolbar, click **New group... t** o create a new group.

3. In the **Groups** pane (Figure 2-5), rename "Group 1" to the name of your choice.

- 4. To add samples to this group, either:
 - From the Select pane, select them, then click Add to Group
 .

OR

• Drag and drop the selected samples from the **Select** pane to the name icon of the desired group (Figure 2-6).

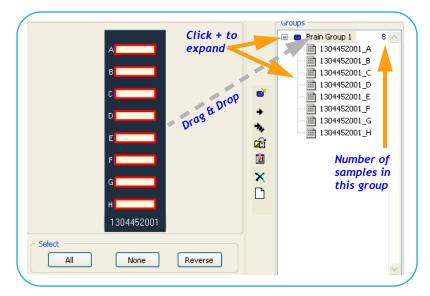


Figure 2-6 Drag and Drop Samples into a Group

- 5. To populate groups with samples from multiple BeadChips or SAMs, highlight the barcode in the **Repository** pane and select the desired samples.
- 6. The number to the right of each group icon is the number of samples contained in that group. To expand the group tree and view see the sample identities, click the + sign to the left of the group name.

Single-Sample per Group

Highlight the samples you wish to add in the **Select** pane, then click **Create a group for each sample .**

A group will be created for each selected sample (Figure 2-7). Each group is named for the sample it contains. Groups from additional BeadChips or SAMs may be added to the same experiment by the method described in *Populating Groups* on page 2-8, step 5.

Groups		
主 ··· 😑	1304452001_A	1 🔨
÷. 😑	1304452001_B	1
÷	1304452001_C	1
÷. 🗖	1304452001_D	1
÷. 😑	1304452001_E	1
÷	1304452001_F	1
🗄 🗖	1304452001_G	1
÷ 🗖	1304452001_H	1

Figure 2-7 Single-Sample per Group

Sample Sheet Method

See Shortcut Tools for Defining Experiments on page 2-25.

Group Layout Method

See Shortcut Tools for Defining Experiments on page 2-25.

Removing Groups

To remove a selected group, click **Remove...** 🗙 .

To remove all groups, click Clear all groups... 🖺 .

Analyzing Gene Expression Data

Once you have created your groups, you have fully defined your experiment. At the Samples Page, click west > 100 access the Analysis Page (Figure 2-8).

1. In the Analysis pane, you may select Gene Expression or Differential Expression.

BeadStudio Experiment V	Wizard - Analysis Page	
BeadStudio Gene E Experiment Analysis Para	xpression Experiment Wizard ameters	
Analysis		
C Gene	e Expression	
Analysis Parameters Normalization Error Model	rank invariant	
Reference Group	Liver	
	Cancel < Back Next >	Finish

Figure 2-8 Analysis Page

NOTE:

If you select **Gene Expression**, BeadStudio will generate a file containing gene expression intensity values for each gene in each experimental group, along with various other quality-related measurements.

If you select **Differential Expression**, BeadStudio will generate a file with the same information as for Gene Expression, including a differential expression score for each gene in each group. This score represents the statistical confidence that the gene's expression has changed with respect to a reference group.

 In the Analysis Parameters pane (Figure 2-8), use the pulldown menus to select the Normalization method, Error Model, and Reference Group. (See Table 1-1, BeadStudio Terminology on page 1-4 for definitions of these terms.)

NOTE:

Normalization method applies to both Gene Expression and Differential Expression. Error Model and Reference Group apply only to Differential Expression.

For most routine whole genome expression experiments, Illumina recommends the **rank invariant** normalization method.

For Differential Expression experiments, we recommend the **Illumina custom** Error Model.

For Differential Expression, choose any of your defined groups as the **Reference Group**.

See Chapter 6 for complete lists and descriptions of Normalization methods and Error Models.

The DASL mode **Analysis Page** has two additional parameter options in the **Analysis Parameters** pane (Figure 2-9):

Content Descriptor file

An .xml file describing the gene content of your DAP oligo pool. BeadStudio uses the **Content Descriptor file** to provide biological information for the sample signals. This file is named according to the convention XXXX-DAP.xml, where XXX is an Illumina-assigned barcode. For further information, see Content Descriptor File on page 1-9.

Mask file

Allows you to choose which probes to include in your analysis. If you have created a **Mask file**, check the **Use Mask File** box, then browse to the location of this file. For more information on Mask files, please see Creating the Mask File on page 2-40.

BeadStudio Experiment W	/izard - Analysis Page
BeadStudio Gene Ex Experiment Analysis Para	apression Experiment Wizard
Analysis © Gene Analysis Parameters	Expression C Differential Expression
Content Descriptor	G50006187-DAP C:\Experiment Directory\DAP_Mask files\G5000 Browse
Normalization	none
	Cancel < Back Next > Finish

Figure 2-9 DASL Mode Analysis Page

3. Click Next> to access the Output Parameters Page (Figure 2-10).

BeadStudio Experiment Wizard - Output Parameters Page
BeadStudio Gene Expression Experiment Wizard New Experiment Output Parameters
Output Directory
C:\Experiment Directory\Brain vs Liver - April 27, 2005\Output Browse
Output Data Output Format Minimum Signal Average Signal Maximum Signal Number of Replicates Replicate Stdev Bead Stdev Number of Beads Detection Probe Concordance Score Select All Clear All
Cancel < Back Next > Finish

Figure 2-10 Output Parameters Page

4. In the **Output Directory** text field, enter or browse to the location to which you want to save your output data.

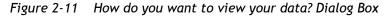
NOTE:

The default location is the Experiment Directory you specified at the start of the Wizard.

- Select the data fields you want the output file to save by checking or un-checking the Output Data pane boxes. Tables 2-1 thru 2-5 (pages 2-28 thru 2-39) list and describe these output file data fields.
- 6. Specify output file format from the **Output Format** pulldown menu.
- 7. Click Finish
- 8. If this is the first time you are using this kind of Matrix (SAM or BeadChip) for DirecyHyb experiments, BeadStudio will prompt for its Content Descriptor (.xml) file. This file associates the BeadArray Reader's scanned image data with the SAM or BeadChip's probe content (see *Content Descriptor File* on page 1-9 for more information). Browse to the file; BeadStudio will load it onto your hard drive.

NOTE:

Once you have loaded the Content Descriptor file onto a given computer, you will never have to load it again.


- 9. Because different oligo pools could be used for different samples on the same universal SAM or BeadChip, you must browse to the correct Content Descriptor file associated with the oligo pool used for the analyzed samples. If this is the first time you are using an oligo pool (DAP), browse to the file. BeadStudio will load it onto your hard drive. All previously loaded DAP.xml files are available in the Content Descriptor pulldown menu (Figure 2-9).
- 10. As BeadStudio generates and saves your output files to the location you specified, you can observe real-time progress of these operations in the **Message** pane on the **Main Page**.

Viewing Your Data

 After the output files are generated and saved, select a radio button in the How do you want to view your data? dialog box (Figure 2-11). Scatter Plots, Cluster Analysis Dendrograms, and Control Summary Graphs are described in Chapter 3, Data Visualization.

View Brain vs Liver - April 27, 2005_gene_profile.csv
How do you want to view your data?
 Make scatter plots from the data
O Make cluster diagrams from the data
O Generate a Control Summary Report
◯ View the folder containing this file
OK Cancel

NOTE:

Alternatively, you may wish to open the output files directly. If so, select the **View the folder containing this file** option. to open a Windows folder containing the files. You may view the files in Microsoft Excel or a variety of other applications. Process an Experiment Outside the Wizard: Using the BeadStudio Main Page

- 1. You may access the BeadStudio Main Page in several ways:
 - After starting the BeadStudio application (see Start BeadStudio on page 1-8), at the Welcome screen What would you like to do? pane, select the radio button for Start in the BeadStudio Main Page (Figure 2-12).
 - After you have run the New Experiment Wizard, at the How do you want to view your data? dialog box (Figure 2-11), click Cancel to return to the Main Page.
 - After you have run the New Experiment Wizard and completed data visualization, BeadStudio will automatically display the Main Page.

Welcome
Welcome to Illumina's BeadStudio.
What would you like to do?
O Start the New Experiment Wizard
○ Visualize existing data
⊙ Start in the BeadStudio main page
Analysis Mode
DirectHyb ODASL
OK Cancel

Figure 2-12 Welcome - Start in the BeadStudio Main Page

- 2. At the **Analysis Mode** pane, click the radio button to select the appropriate mode.
- 3. Click OK to access the Main Page (Figure 2-13).

King the second se	sitory 💌 Browse.			Groups
Barcode 1232920 1304452001 1306980011 1306980012 1306980013 1306890014 1308880015	Format Array Matrix BeadChip 8x1 BeadChip 8x2 BeadChip 8x2 BeadChip 8x2 BeadChip 8x2 BeadChip 8x2 BeadChip 8x2	B C D D C C D D C C D D C C D D C C C D D C	 ● ◆ ◆ ● >	■ 1304452001_C ■ 1304452001_C ■ 130452001_C ■ 130452001_C ■ 130452001_C ■ 130452001_C ■ 130452001_C ■ 130452001_C ■ 130452001_F ■ 130452001_G ■ 130452001_G ■ 1304452001_H ■ 1304452001_H
adStudio 1.5.0.33	started in DirectHyb mode.			

Figure 2-13 BeadStudio Main Page

- 4. In the **Repository** pane, enter or browse to the directory in which you have your images and raw data files from the BeadArray Reader.
- 5. Click on a barcode in the **Select Barcodes** pane to display that BeadChip or SAM in the middle pane.
- 6. Create and populate groups, following the steps in the *Populating Groups* section, starting on page 2-8.

Analyzing Gene Expression Data

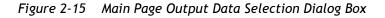
Once you have created your groups, you have fully defined your experiment. Use one of two methods to analyze your data using the BeadStudio Main Page:

Toolbar Buttons

 From the main toolbar, click the Verify Matrix/BeadChip button . BeadStudio will evaluate the quality of the samples contained on the currently selected SAM or BeadChip. Samples that meet the verification criteria will turn green; those that do not meet the criteria will turn gray.

You may review the gray samples and decide either to include or exclude them from BeadStudio's analysis.

2. From the main toolbar, click the Gene analysis button


or the **Diff analysis** button \swarrow to launch the **Experiment Parameters** dialog box (Figure 2-14).

r indystor i dran	neters	
Normalization	none	*
Differential Exp	vression	
Ref Group	v	
Error Model		~
Content De Mask File	scriptor	Browse
	scriptr	
Mask File	skriptor	
Mask File Output Format Co Directory		Browse
Mask File Output Format Co Directory	Jum oriented (Comma definited) (*.csv)	Browse

Figure 2-14 Main Page Experiment Parameters Dialog Box

- 3. Select appropriate parameters, then click Select Output Fields.... Select Output Fields....
- 4. At the **Output Data Selection** dialog box (Figure 2-15), select the data fields you want the output file to save by checking or un-checking the **Output Data** pane boxes. Table 2-2 on page 2-32 lists and describes these output file data fields.

💐 BeadStudio Output Data Selection	×
Output Data	
🗹 Minimum Signal	
🗹 Average Signal	
🗹 Maximum Signal	
✓ Number of Replicates	
✓ Replicate Stdev	
✓ Bead Stde∨	
✓ Number of Beads	
✓ Detection	
Select All Clear All	
OK Cancel	

5. Click **OK** (BeadStudio will return to the **Experiment Parameters** dialog box).

- 6. Click **OK** again at the **Experiment Parameters** dialog box to start the output file generation process.
- 7. From this point, continue from step 8 on page 2-16.

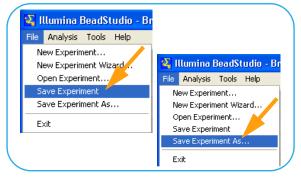
Pulldown Menus

From the main toolbar, select **Analysis | Gene Analysis...** or **Analysis | Differential Expression Analysis** (Figure 2-16).

21	llumina B	BeadSt	tudio - Bra	in vs Liv	/er - A	pril 27,			
File	Analysis	Tools	Help						
	. Verify:	Sentrix	Array Produc	t 1304452	Co1				
сB	Gene A	Analysis							
С	Differe	ntial Ex	pression Ana	lysis	_				
			21	lumina	BeadS	tudio -	Brain vs I	Liver - Ap	ril 27
			File	Analysis	Tools	Help			
				Verify	Sentrix	Array Pr	oduct 13044	52001	
			⊂ B	Gene	Analysis				
			C:	Differ	ential E>	pression	Analysis		

Figure 2-16 Analysis Mode Selected from the Menu Bar

Re-Launching the New Experiment Wizard


If you have been working in the BeadStudio Main Page, and would like to start another new experiment using the New Experiment Wizard (without shutting down and restarting the whole application), from the menu bar, select File | New Experiment Wizard... (Figure 2-17).

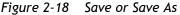


Figure 2-17 Re-Launch New Experiment Wizard

Saving Current Experiment & Loading Saved Experiments

To save a current experiment, from the menu bar, select File |Save Experiment or File |Save Experiment as.... ().

NOTE:

When you save an experiment, BeadStudio creates a file containing the list of selected samples and their groupings. This file is distinct from the gene_profile, gene_diff and qcinfo files generated when you process an experiment through the Gene Analysis or Differential Expression Analysis tools. By saving an experiment, you can preserve a record of its layout.

To load a saved experiment and re-process using different options (e.g., different normalization), select File |Open Experiment... (Figure 2-19).

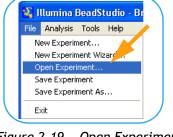


Figure 2-19 Open Experiment

Viewing Your Data

After the output files are generated and saved, to view your data from the Main Page:

From the menu bar, select **Tools** |**Visualize Existing Data...** (Figure 2-20).

Figure 2-20 Visualize Data from the Menu Bar

From the toolbar, click Start scatter plot or Start cluster analysis _____.

Figure 2-21 Visualize Data from the Toolbar

Scatter Plots, Cluster Analysis Dendrograms, and Control Summary Graphs are described in Chapter 3, *Data Visualization*.

Shortcut Tools for Defining Experiments

Illumina provides two shortcut tools for defining experiments in BeadStudio:

Group Layout File

Most useful for the 8 x 12 SAM format, where an experiment is likely to be confined to one SAM. The Group Layout file can be applied to multiple matrices having the same pattern.

Sample Sheet

Most useful for Multiple SAMs or for BeadChips (all formats), where an experiment likely spans several BeadChips.

Set Up & Apply Group
Layout FilesBeadStudio provides a quick alternative method for creating
large numbers of groups in complex experiments, saving
setup time.

The **Apply Group Layout...** option allows you to apply a layout file you have already created (in MS Excel) to one BeadChip or SAM. BeadStudio automatically creates groups according to the applied layout file, then adds selected samples to those groups.

Use the following template as a guide for creating your own group layout files (Figure 2-22). This file must be saved as a *.csv file.

R 1	Micro	soft Ex	cel -	drug tir	necourse	e_ma	trix.csv											
8	Eile	<u>E</u> dit	<u>V</u> iew	Insert	Format	<u>T</u> ool:	s <u>D</u> ata	<u>W</u> indow	Hel	p						Type a q	uestion for hel	lp
	G18	3	•	f _×														
		A		В	С		D	E		F	G	Н	1	J	K	L	М	
1	Row	\Colum	in	1		2	3	3	4	5	6	7	8	9	10	11	12	
2			1 000) min_A	120 min	_A 0	130 min_B	000 m	in_C	120 min_C	030 min_D	000 min_E	120 min_E	030 min_F	000 min_G	120 min_G	030 min_H	
3			2 005	i min_A	180 min	_A 0	140 min_B	005 m	in_C	180 min_C	040 min_D	005 min_E	180 min_E	040 min_F	005 min_G	180 min_G	040 min_H	
4			3 010) min_A	240 min	_A 0	150 min_B	010 m	in_C	240 min_C	050 min_D	010 min_E	240 min_E	050 min_F	010 min_G	240 min_G	050 min_H	
5			4 020) min_A	300 min	_A 0	160 min_B	020 m	in_C	300 min_C	060 min_D	020 min_E	300 min_E	060 min_F	020 min_G	300 min_G	060 min_H	
6			5 030) min_A	000 min	_B 1	20 min_B	030 m	in_C	000 min_D	120 min_D	030 min_E	000 min_F	120 min_F	030 min_G	000 min_H	120 min_H	
7			6 040) min_A	005 min	_B 1	80 min_B	040 m	in_C	005 min_D	180 min_D	040 min_E	005 min_F	180 min_F	040 min_G	005 min_H	180 min_H	
8			7 050) min_A	010 min	_B 2	240 min_B	050 m	in_C	010 min_D	240 min_D	050 min_E	010 min_F	240 min_F	050 min_G	010 min_H	240 min_H	
9			8 060) min_A	020 min	_B 3	100 min_B	060 m	in_C	020 min_D	300 min_D	060 min_E	020 min_F	300 min_F	060 min_G	020 min_H	300 min_H	
10																		

Figure 2-22 Group Layout File Example

- 1. From the Groups pane toolbar, click Apply Group Layout...
- 2. When the **Open** pop-up appears, navigate to the appropriate file and click **Open** (Figure 2-23).

Open						? 🔀
Look in:	🚞 Group Layout		*	G 🤌	بي 🥙	
My Recent Documents Desktop My Documents	XExample Experim	ent Description file.cs Double-cli highlighte or click Op	ck the d file			
My Computer						
	File name: Ex	ample Experiment Descr	iption file.	csv	~	Open
My Network	Files of type: M.	atrix Layout Files (*.csv)			*	Cancel

Figure 2-23 Open Pop-Up

3. Samples on the selected SAM will be mapped into groups according to the Group Layout file you applied; those groups will be displayed in the **Groups** listbox (Figure 2-24).

See Set Up & Apply Group Layout Files on page 2-25 for a file format template example.

4. To display the samples for a group in the **Groups** listbox, click the plus sign (+) next to that group (Figure 2-24).

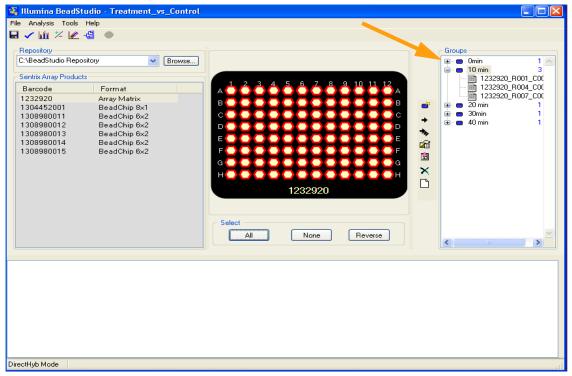


Figure 2-24 Groups Displayed per Applied Group Layout File

NOTE:

Each Beadchip layout must be saved in a separate group layout file.

2-28 BeadStudio User Guide

Set Up & Apply

Sample Sheet

Ē

To help BeadStudio effectively track your samples and assay, Illumina recommends you create a Sample Sheet.

Create your Sample Sheet in MS Excel, according to the guidelines provided in Table 2-1.

NOTE:

The Sample Sheet is used in Illumina's Genotyping products as well as its Gene Expression products. Therefore, some columns in the Sample Sheet are relevant to one or the other, but not both, product lines). Table 2-1 displays the Sample Sheet columns that BeadStudio uses in BLUE.

Table 2-1 Sample Sheet Guidelines

	Description	Optional (O) or Required (R)
Sample_Name	For example, S12345. If not user-specified, the BeadStudio application will assign a default sample name, concatenating the sample plate and sample well names.	0
Sample_Well	For example, A01. The well containing the specific sample in the 96-well sample plate.	0
Sample_Plate	For example, XXXXXXXXXRNA. User-specified name for the plate containing RNA samples.	0
Sample_Group	For example, Group_1 User-specified name of the sample group. Note: If Sample_Group is missing, BeadStudio creates one group with the name "Default Group"	R
	Not Used for Direct Hyb.	
Pool_ID	For example, GS0006187-DAP. Name of the DAP.	R

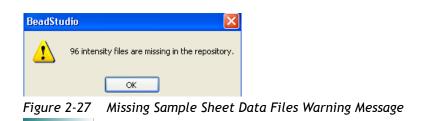
Table 2-1Sample Sheet Guidelines (continued)
--

	Description	Optional (O) or Required (R)
Sentrix_ID	For example, 1167988 SAM or BeadChip ID	R
	For example, R001_C001 for a SAM, A1 for a BeadChip. For SAMs, the SAM sample to which the sample is hybridized. For BeadChips, the section to which the sample is hybridized.	R
NOTES	 Your sample sheet header may contain any, and as much, inform you choose. Your sample sheet may contain any number of columns you choose. Your sample sheet must be in a comma-delimited (.csv) file form 	se.

Figure 2-25 provides examples of the flexible Sample Sheet format for both BeadChip and SAM. The BeadStudio Documentation CD (Illumina part # 11181791) includes electronic, read-only Sample Sheet template files (*Sample Sheet Template for BeadChip.csv* and *Sample Sheet Template for SAM.csv*) you can copy and use.

8	Ele Edit View 1 M47 •	Insert Format	<u>T</u> ools <u>D</u> ata	Window Help	Adobe PDF											
	A	B	С	D	E	F	G	Н								
2	[Header] Investigator Name															
3	Project Name															
	Experiment Name									D	andCh	ine				
5 6	Date									D	eadCh	ips				
	[Data]															
3		Sample_Well A03	Sample_Plate	Sample_Group	Pool_ID	Sentrix_ID	Sentrix_F	osition				Sentr	ix_Posit	ion i	namo	
, 0		A03 A04					A1 A2									
1		B03					B1					corre	sponds i	to th	e .ida	t file
2		B04					B2									
3 4		C03 C04					C1 C2					nami	ng conve	ntio	ns for	the
5		D03					D1						fic Bead			
6		D04					D2								John	ii ii
7 8		E03 E04					E1 E2					under	r analys:	is		
o 9		E04 F03					F1							-		
0		F04					F2									
1		G03 G04					G1 G2									
3		H03					H1			Microsoft Excel - S	Comple Sheet 6	as SAM Tomola	to only			
4		H04					H2									
5		A01					A1		1			<u>T</u> ools <u>D</u> ata	Window Help	Ado <u>b</u> e PDF	-	
6 7		A02 B01					A2 B1		_	M78 👻	f _x					
8		802					B2			A	В	C	D	E	F	G
9		C01					C1		1							
0		C02 D01					C2 D1		2							
2		D02					D2			Project Name Experiment Name						
3		E01					E1			Date	9					
4		E02					E2		6							
6 6		F01 F02					F1 F2		7							
	► N \Sample Sh		for BeadC /				1		8		Sample_Well	Sample_Plate	Sample_Group	Pool_ID	Sentrix_ID	Sentrix_Positio
									9		A01					R001_C001
									10		A02					R001_C002
									11		A03					R001_C003
									12		A04 A05					R001_C004 R001_C005
									14		A06					R001_C005
									15		A07					R001 C007
									16		A08					R001 C008
									17		A09					R001_C009
									18		A10					R001_C010
									19		A11					R001_C011
									20 21		A12 B01					R001_C012
									21		802					R002_C001 R002_C002
									23		803					R002_C002
									24		B04					R002_C004
									25	i	805					R002_C005
						C			26	1	B06					R002_C006
						/	4 <i>Ms</i>		27		807					R002_C007
									28		B08					R002_C008
									29 30		809 B10					R002_C009 R002_C010
									30		B10 B11					R002_C010 R002_C011
									32		B12					R002_C011 R002_C012
									33		C01					R003_C001
									34		C02					R003 C002
									34 35 36	i	C02 C03 C04					

Figure 2-25 Sample Sheet Examples


- 1. From the Groups pane toolbar, click Load from sample sheet...
- 2. When the **Open Sample Sheet** pop-up appears, navigate to the appropriate file and click **Open** (Figure 2-26).

Open Sample S	heet					? 🔀
Look jn:	🚞 Sample Sheets	:	*	0	۵ 🕫 🕽	•
D Recent	Sample_Sheet 6	BeadChips.csv				
Desktop		Double-cli highlighte or click Op	d file			
My Documents						
My Computer						
	File <u>n</u> ame:	Sample_Sheet 6 BeadChips	.CSV		*	<u>O</u> pen
My Network	Files of <u>type</u> :	Sample sheet files (*.csv)			*	Cancel

Figure 2-26 Open Sample Sheet Pop-Up

NOTE:

If data files are missing, a warning message will alert you (Figure 2-27). If this message pops up: 1) check your Sample Sheet for errors; 2) ensure that your data files are in the proper location; and 3) ensure that the repository is correctly selected.

Gene Analysis Output Files

Following gene analysis, the files listed below are created and placed in the directory for the associated experiment:

- XXXXXX_gene_profile.csv OR XXXXXX_gene_profile.txt
- XXXXXX_gene_probe_profile.csv OR XXXXXX_gene_probe_profile.txt
- XXXXXX_qcinfo.csv OR XXXXXX_qcinfo.txt Where "XXXXXX" is the experiment name.
- If you have selected the MAGE-ML output format, the file created will be: XXXXX_MAGE-ML.xml

Table 2-2 provides brief descriptions of the output files.

Table 2-2Output File Descriptions

Output filename	Description					
XXXXXX_gene_profile	Intensity data and various quality scores reported at the gene level. Signals from probes for the same gene are combined to give a single value for the gene.					
XXXXXX_gene_probe_profile	Intensity data and various quality scores reported at the probe level. Each probe is listed individually. This file is only generated for experiments using more than one probe per gene.					
XXXXXX_gene_diff	Intensity determining if gene expression levels have changed between two experimental groups.					
XXXXXX_qcinfo	Intensity data for categories of experimental control probes. The categories of controls reported in the file are described in the System Manual System Controls appendix for your specific product.					
NOTE: Detailed descriptions of the contents of these files is provided in Tables 2-3, 2-5, and Table 2-5.						

Refer to Figures 2-28 through 2-31 and Tables 2-3 and 2-5 for example output files and column heading descriptions, respectively.

Microsoft E																8
🕙 <u>F</u> ile <u>E</u> dit	⊻ie		t F <u>o</u> rmat		ta <u>W</u> indow	Help A	do <u>b</u> e PDF						Type a	question for	help 🝷 🗕	8
Y34	-		0.01036													_
A		В	С	D	E	F	G	Н		J	K	L	M	N	0	
			o X versio	n 1.4.0.0												
2 Normaliz																-
			q_Content	xml												_
4 Error Mo																1
			3:03 PM													+
5 Local Set	ttings	s = en-US	;													_
7																
3 TargetID													NARRAYS			
9 GI_10047		330	332.3	334.6	2	3.3		29	0.31104	274.9	308		3	28.7	20.1	
0 GI_10047		849.3	888.4	927.6	2	55.3	43.2	26	1		834.6			117.2		
1 GI_10047		1747.1	1975.2	2203.2	2	322.5	100.5	36	1	1686.5	1811.9			118.8		
2 GI_10047		4258.4	4342.9	4427.5	2	119.5	144.1	50	1	4198.8	4772.2	5218		521.5		
3 GI_10047		5732.5	6606.8	7481.2	2	1236.5	350.7	31	1	5160.6	5711.3		3	500.3		
4 GI_10047		2012.2	2313.3	2614.4	2	425.8	124.9	32	1	2058	2403.2	2679.4	3	316.4		
5 GI_10047		279.3	287.2	295.2	2	11.2	17.4	44		230.1	253.1	272.7	3	21.5		
6 GI_10047		641.6	697.4	753.3	2	79	24.1	45	1	626.7	652.7	697.4	3	38.9		
7 GI_10047		532.3	556.7	581.1	2	34.5	28.4	33	1	500.7	515.8		3	22.5		
8 GI_10048		244.2	247.6	251	2	4.8	10.3	35	0.004113	225	237.2	252.3	3	13.9		
9 GI_10092		318.5	336.9	355.4	2	26.1	14.7	44	0.36351	329.9	336.4	345	3	7.7	16.4	
0 GI_10092		540.8	587	633.2	2	65.3	34.7	33	1	484.6	540.5			70.6		
1 GI_10092		619.3	682.7	746.1	2	89.7	28.6	47	1	618.9	661.5			69.4		
2 GI_10092		415.4	416.9	418.5	2	2.2	28.3	30	0.951802	365.4	407.6	451.7	3	43.2		
3 GI_10092		659.6	690.9	722.2	2	44.3	48.9	23	1	600.8	647.1	706.2	3	53.9		
4 GI_10092		618.8	660.3	701.8	2	58.7	27.5	42	1	646.6	663.6	683.2	3	18.5		
5 GI_10092		378.3	398.6	418.9	2	28.7	21.9	31	0.87944	342.9	387.8	431.3		44.3		
6 GI_10092		3013.8	3708	4402.2	2	981.8	115.8	42	1	2987.8	3318.2	3503.9	3	286.9		
7 GI_10092		472	486.5	501	2	20.5	31.9	32		391.2	478.6	532.3	3	76.4	30.4	
8 GI_10092		323.9	355.9	388	2	45.3	20.4	36	0.528093	286.3	306.7	334.7	3	25.1	22	
9 GI_10092		885.3	933.8	982.3	2	68.6	35.2	45	1	775	800.8	833.1	3	29.6		
0 GI_10092		380	387.2	394.5	2	10.3	18.6	27		360.2	387.3		3	45.5		
1 GI_10092		1631.3	1829.4	2027.5	2	280.2	70.5	42	1	1525.6	1541.3	1566.8	3	22.3		
2 GI_10092		840.2	903.7	967.2	2	89.8	48.8	28	1	737	798.4	863.5	3	63.3		
3 GI_10092		345.3	366.1	386.8	2	29.3	19		0.65401	349.5	387.1	435.7	3	44.1	26.1	
4 GI_10190		251.2	279.4	307.7	2	40	16.3	29	0.035913	214.4	239.5		3	22.6		
5 GI_10190		658.2	669.6	681.1	2	16.2	38.7	31	1	675.6	692.4	711.9		18.3		
36 GI_10190		420.5	432.9	445.4	2	17.6	20.7	24	0.98161	425	441.9		3	14.7		
37 GL 10190		352.9	354.8 ene profile		2	2.6	19.9	40	0.531922	291.1	307.3	317.8	3	14.2	16.1	Þ

Figure 2-28 Example XXXXXX_gene_profile File

NOTE:

The example shown in Figure 2-28 was generated in a "columnoriented" format. When generated in "column-oriented" format, the GroupID column that appears in the "row-oriented" format (not shown) disappears, and the GroupID is appended to all column headings according to the group with which they are associated.

Table 2-3 gene_profile Column Descriptions

Column Heading	Description							
GroupID	Identifies the experimental group.							
TargetID	Identifies the gene name							
ProbeID	Identifies the bead type							
MIN Signal *	Minimum intensity of the Bead Type/target in the group							
AVG Signal *	Average intensity of the Bead Type/target in the group							
MAX Signal *	Maximum intensity of the Bead Type/target in the group							
NARRAYS	Number of samples in the group							
ARRAY_STDEV	Standard deviation associated with sample-to-sample variability within the group (undefined when the group contains a single sample)							
BEAD_STDEV	Average standard deviation associated with bead-to-bead variability for the samples in the group							
AVG_NBEADS	Average number of beads per bead type representing probes for the gene							
Detection	1-p-value computed from the background model characterizing the chance that the target sequence signal was distinguishable from the negative controls							
DASL™ Assay 0/1	Used for masking unverified probes in DASL mode.							
 In DASL Mode, signal is the sum of the red and green channel signals. Bead stdev is an average of bead stdev on red and green channels. * In the case of groups containing only one sample, MIN, AVG, and MAX signals are equal. 								

]

M	icrosoft Ex	kcel – Exp	perime	ent 1_gen	e_probe_p	orofile.csv										_ 8
8	<u>F</u> ile <u>E</u> dit	<u>V</u> iew	Insert	t F <u>o</u> rmat	<u>T</u> ools [<u>)</u> ata <u>W</u> indov	v <u>H</u> elp	Ado <u>b</u> e PDF						Type a	question for	nelp 🔹 🗕 🗗
	AA37	-	f _x	ŕ												
	A	В		С	D	E	F	G	Н		J	K	L	M	N	0
1	Illumina Ir	nc. Beac	dStudi	o X versio	n 1.4.0.0											
2	Normaliza	ation = n	ione													
				nTox1.xml												
4	Error Mod	lel = nor	ne													
5	DateTime	= 10/12	2/2004	3:12 PM												
6	Local Set	tings =	en-US	;												
7																
	TargetID	Probel														ARRAY_S BE
	GI_10092		80	98.3	141.8				6.2		0.282158	98.3	137.5		36	39.9
	GI_10092		752	448.5	2549.2		6		99.9		0.999419	960.2	2474.2		36	701.1
	GI_10716		61	190	456.8				19.6	28	0.46694	210.6	453.1	1575.5	36	224.7
	GI_10716		303	102.7	450.3		6		21.2		0.509246	102.7	478.3		36	139.5
	GI_10834		101	106.9	215.4		6		11.6	28		106.9	182.1	451	36	90.6
	GI_10834		811	99.6	136.6		6		11.2	27	0.279279	99.6	125.7		36	34.2
	GI_10834		831	133.4	1650.9		6		81.3		0.990133	643	1815.1	2588.5	36	691.8
	GI_10834		6070	1691.5	2470.8		6		108.6		0.999334	1692.3	2399.1	2969.8	36	330
	GI_10835		273	395.2	1506.1		6		65.1	29		395.2	1464.9		36	395.6
	GI_10835		969	869.1	2684.6		6		105.4	27	0.999906	1706.5	2710.6		36	280.7
	GI_10835		230	162.4	896.4		6		40.3	27	0.779958	542.4	934.8		36	160.5
	GI_10835		833	1170.7	2436.4		6		97.6		0.999861	1503.7	2605.4		36	554.3
	GI_10835		153	127.4	761.9		6		35.6	28		341.7	769.3		36	349.2
	GI_10835		331	115	933		6		46.5	33		116	651.2		36	791.3
	GI_10835		54	547.9	1876.3		6		75		0.990404	1232.9	1884.7		36	330.5
	GI_10835		115	104.3	468.6				27.1	27	0.534934	136.5	530			341.5
	GI_10835		56	163.4	1516.3		6		66.1		0.957998	829.5	1574.8		36	396.6
	GI_10835		74	174.2	1177.9		6		47.2	29		535.5	1119.6		36	295.5
	GI_10835		022	235.2	1894.		6		85.6		0.990149	598.6	1946.6		36	629.4
	GI_10835		75	158.3	1815.9		6		88.3	27	0.984104	812	1763		36	399.2
	GI_10835		842	234.5	1141.3		6		54.7		0.843986	741.1	1118.6		36	300.9
	GI_10835		905	332.6	2255		6		88.7		0.999651	436.4	2455.9		36	931.3
	GI_10835		857	146.6	547.4		6		25.1	29	0.504853	213.9	492.8		36	213.4
32	GI_10835	1 1	650	117.3	183.3	3 305.4	6	0 42.1	7.4	31	0.313885	121.4	184.8	262.7	36	36.6

Figure 2-29 Example XXXXXX_gene_probe_profile File

NOTE:

The example shown in Figure 2-29 was generated in a "columnoriented" format. When generated in "column-oriented" format, the GroupID column that appears in the "row-oriented" format disappears, and the GroupID is appended to all column headings according to the group with which they are associated.

The output file column headings are essentially the same for gene_probe_profile file as for the gene_profile file. See Table 2-3.

File Edit	View Inser	t Format	<u>T</u> ools <u>D</u> a	ta Window	Help Ad	ohe PDE										Type	a question f	or helt 🔹 🕳
U78		s.	1000 20	.u <u>.u</u> nuon	Tob No	000101												-
A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S
lumina Inc	. BeadStud	io version	1.5.0.32															
lormalizat	ion = rank i	nvariant																
krray Cont	REFSEQ2	BETA_PN'	11193506A	11193418.	xml													
Error Mode	el = Illumina	custom																
DateTime =	= 3/14/2005	5:18 PM																
.ocal Setti	ngs = en-US	5																
「argetID	MIN_Signs.			NARRAYS								NARRAYS						Concordar
	-217.221	-58.4382	-2.14412	4	105.891	55.3711		0.200257	-16.4037	2.26799	15.8675	4	14.0107	3.87035			4.525339	1
GI_100470	12.7944	777.225	2240.01	4	998.167	77.7199	26	1	12.7637	3661.75	5560.47	4	2499.32	123.865	28		14.93077	1
GI_100470	14.5858	82.2508	125.211	4	47.3832	88.1703	21	0.997433	67.2704	82.5376	107.484	4	18.0455	8.29963	21	0.998716	0.012442	1
GI_100470		199.299	283.069	4	68.8922	78.7155	24	1	144.167	321.693	397.15	4	119.951	16.9637	31	1	5.30527	1
GI_100470		86.1386	179.453	4	62.2975	79.3211		0.993582	28.5322	45.4389	84.3237	4	26.0934	5.11369		0.994865		1
GL_100471		542.49	651.762	4	75.0719	168.01	29	1	530.146	552.742	579.455	4	22.1244	20.2271	29		0.198995	1
	-7.38113	5.20672	23.5638	4	13.07	117.598	16	0.509628	-3.07645	4.37764	15.9906	4	8.42779	4.92885	18	0.750963		1
	-163.961	1302.61	2155.24	4	1027.74	132.743	16	1	537.852	1070.77	2236.67	4	789.969	61.3267	17	1	1.42000	1
GI_100471		73.1958	103.352	4	24.5757	82.5027	29	0.994865	6.12585	40.3528	101.932	4	42.3196	5.72642	34	0.992298	-1.66271	1
GL_100471	-82.5197	-25.0353	1.39281	4	38.8066	52.7497	18	0.269576	-6.733	-2.55045	0.290878	4	3.01447	3.88768	28	0.417202	1.477926	1
GL_100471	104.725	149.264	187.203	4	36.9451	121.806	23	1	21.2417	77.8953	198.706	4	83.011	6.55031	31	0.997433	-3.22911	1
GL_100471	-449.657	-86.8451	81.5676	4	244.197	57.6089	22	0.97561	-3.42268	149.16	228.579	4	106.547	10.3562	26	1	10.54499	1
GL_100471	-2.53302	91.4028	362.574	4	180.803	66.8398	33	0.727856	-6.61327	1.09663	5.90508	4	5.38096	3.4459	28	0.604621	-4.47858	1
GL_100484	6.24606	55.8056	198.33	4	95.0275	79.4255	28	0.856226	-3.43491	2.03055	7.55036	4	5.46115	3.68953	28	0.684211	-3.28634	1
GI_100925	14.4012	5968.95	9390.01	4	4330.28	240.11	23	1	4.12108	3603.98	11119.5	4	5161.64	107.236	26	1	-3.16334	1
G_100925	16.4421	172.111	625.639	4	302.399	125.391	22	0.971759	17.0193	34.7831	46.193	4	13.9667	5.10663	26	0.992298	-4.21825	1
GI_100925		173.607	303.404	4	182.543	74.1822	33	1	224.793	243.501	261.435	4	15.2929	12.0526	26	1	2.976903	1
GI_100926		82.2599	323.016	4	160.547	156.139	25	0.736842	-7.37297	-1.06679	5.61948	4	6.35206	3.58988	27	0.498074	-4.58967	1
GI_100926	-2.54076	66.559	258.229	4	127.977	99.0858	34	0.722721	0.782959	7.34418	12.4992	4	5.08244	4.42133	30	0.856226	-3.59413	1
GI_100926	-480.897	-86.5464	50.032	4	262.926	60.0903	17	0.98973	38.7138	45.6048	63.5908	4	12.0095	5.81132	22	0.994865	4.75288	1
GL_100926	-317.893	-51.0718	57.4594	4	178.518	89.9687	16	0.983312	26.7981	94.4003	134.952	4	49.191	9.02925	18	1	8.371561	1
GI_100926	-138.725	571.323	966.441	4	490.001	58.0594	19	1	333.227	529.503	1011.84	4	322.97	25.2252	27	1	-0.51791	1
G_100926	-62.2099	2.39081	30.236	4	43.3128	108.911	21	0.955071	15.4333	41.8312	54.4369	4	18.1022	4.65938	27	0.994865	2.603811	1
G_100926	-34.1907	-5.6319	5.23896	4	19.0672	56.3735	25	0.673941	-3.96516	3.01955	10.5185	4	6.95153	4.14678	24	0.684211	0.494216	1
G_100926	-453.767	-94.8622	30.8878	4	239.309	95.317	19	0.946085	27.2234	44.4041	58.1475	4	12.8431	7.15918	21	0.994865	5.720199	1
9 <u>1</u> 100926		94.8973	370.88	4	184.029	85.4258		0.783055	-1.68697	5.29805	10.2194	4	5.82907	3.94061		0.816431	-4.3456	1
∋I_100926		184.479	242.057	4	58.4807	51.499	22	1	183.231	195.714	213.167	4	13.9972	10.0616	27		0.400796	1
F_100926	24.0892	148.841	478.457	4	220.058	124.581	22	0.991014	18.1103	46.6569	61.2336	4	19.5609	5.22441	23	0.994865	-4.18833	1
G_100926	-119.898	-6.63977	47.0997	4	76.3478	76.404	20	0.970475	7.16556	14.6579	25.5995	4	7.80164	4.8152	24	0.938383	1.314714	1
SI_101906	-10.0417	56.5275	243.039	4	124.41	88.9303	23	0.405648	-8.41698	-1.56848	4.37644	4	5.30472	4.17528	22	0.442875	-3.61494	1
SI_101906	-6.25144	51.5251	195.611	4	96.314	100.878	12	0.735558	-3.92133	3.51727	10.4189	4	5.99244	6.67606	13	0.713736	-2.89008	1
SI_101906		81.4139	323.441	4	161.355	142.273	15		-6.63161	-1.91896	3.17917	4	4.2789	4.81849		0.467266		1
F_101906		23.9033	94.2822	4	47.3566	150.503	14	0.617458	-6.57349	1.6818	12.2211	4	9.65064	5.41567		0.681643		1
SI_101906	-97.4921	175.861	324.413	4	196.192	71.9899	27	1	-13.1307	100.677	344.34	4	166.114	6.06631		0.998716		1
SI_101906	26.8952	114.932	289.022	4	118.658	92.4012	19	0.993582	30.0152	46.2171	62.9207	4	13.4398	6.71875	28	0.994865	-3.77025	1
G_101906	7.4438	21.4284	50.6308	4	19.6995	66.8638	25	0.8819	7.69662	11.9654	16.2436	4	4.28759	5.08599	27	0.915276	-0.5056	1
G_101906	15.5967	49.7644	136.469	4	57.9236	80.3437	25	0.95122	13.7383	18.0469	23.1508	4	3.87741	4.3863	30	0.961489	-1.7686	1
SI_101906	-235.017	-69.015	-12.6803	4	110.671	59.8329	27	0.032092	-9.85629	-5.92684	3.24063	4	6.14306	3.15098	25	0.181001	4.605869	1
SI_101906	-168.464	-39.0651	11.8149	4	86.4402	131.468	10	0.626444	4.81615	12.2968	19.2326	4	5.92992	6.84515	17	0.929397	4.182477	1
GL_101906	-14.2863	96.9001	399.522	4	201.883	112.733	11	0.585366	1.22207	2.641	6.57169	4	2.62171	5.92455	17	0.676508	-4.18242	1
101906	0.926102	32.897	120.741	4	58.5934	82.7568	19	0.715019	-3.50909	-0.63568	3.25723	4	2.92368	3.73412	22	0.501926	-1.98184	1

Figure 2-30 Example XXXXXX_gene_diff File

Column Heading	Description								
TargetID	Identifies the experimental group.								
MIN Signal *	Minimum intensity of the Bead Type/target in the group								
AVG Signal *	Average intensity of the Bead Type/target in the group								
MAX Signal *	Maximum intensity of the Bead Type/target in the group								
NARRAYS	Number of samples in the group								
ARRAY_STDEV	Standard deviation associated with sample-to-sample variability within the group (undefined when the group contains a single sample)								
BEAD_STDEV	Average standard deviation associated with bead-to-bead variability for the samples in the group								
AVG_NBEADS	Average number of beads per bead type representing probes for the gene								
Detection	1-p-value computed from the background model characterizing the chance that the target sequence signal was distinguishable from the negative controls								
DiffScore	Statistical confidence that the gene's expression has changed with respect to a reference group								
Concordance	Number of probes showing upregulated signal compared to the number of probes showing downregulated signal								
DASL™ Assay 0/1	Used for masking unverified probes in DASL mode.								
Bead st	DASL™ Assay In DASL Mode, signal is the sum of the red and green channel signals. Bead stdev is an average of bead stdev on red and green channels.								
* In the case of groups containin	g only one sample, MIN, AVG, and MAX signals are equal.								

Table 2-4 gene_diff Column Descriptions

_	licrosoft Ex															
8	<u>File E</u> dit	⊻iew <u>I</u> r	nsert	F <u>o</u> rmat		∑ata <u>W</u> indow	v <u>H</u> elp Ad	do <u>b</u> e PDF						Type a	question for h	ielp 🔹 🗕
	AH31	•	_fx (0.500000												
	A	В		С	D	E	F	G	Н		J	K	L	M	N	0
1	Illumina In			X version	1.4.0.0											
2	Normaliza															
3	Array Con		manTo	ox1.xml												
4	Error Mod															
5	DateTime			:12 PM												
6	Local Sett	ings = en	-US													
7																
	ArrayID					e AVG-Signa					AVG-Deter			AVG-Deter.		
9	1202085_I				0.166843			0.176552	3331.1	745.5	1	3445.2	23.4	1	1131	697.9
10	1202085_I				0.15165			0.165394	4477.8	442.8	1	4532.2	815.2	1	1423.2	897.8
11	1202085_I			8.2	0.1824		13.5		4000	917.9	1	4517.4	31.5	1	1387.2	876.1
12	1202085_I				0.20632		7.9	0.206205	4384.7	697.9	1	4410.1	122.6	1	1338.4	855.3
13	1202085_I				0.20382		18	0.224079	4629.5	873.8	1	4468.6	158.8	1	1329.8	862.5
14	1202085_1	109	.7	2.5	0.22498		6.6	0.228234	4524.8	830.3	1	4813.8	350.3	1	1296.8	867.7
15	1202085_I				0.24372		5.8	0.242434	4792.5	587.5	1	4776.3	24.4	1	1294.7	894.5
16	1202085_I	106	.1	9.2	0.2636		13.9	0.284674	4687	858.5	1	4513	53.5	1	1155.1	807.2
17	1202085_1	195	.7	32.9	0.29162	1 199.2	16	0.294973	4490.9	1053	1	4615	152.4	1	1285.3	890.2
18	1202085	10)0	1	0.201119	9 103.7	12.9	0.202359	4274.1	854.9	0.999988	4368	40.8	0.999993	1413.5	842.9
19	1202085	103	2	6.1	0.20413	5 108.6	15.3	0.205846	4983.2	746.1	0.9999999	4817.6	225.4	0.999996	1597.4	928.6
20	1202085	100	.7	2.6	0.19792	3 114.2	9.2	0.202408	4150.9	650.9	0.99996	4265.7	92.8	0.999977	1437.5	838
21	1202085	101	4	10.5	0.18175	1 109.2	14.4	0.187061	4789.3	908.7	1	4913.2	74.8	1	1455	973.2
22	1202085	108	9	9.7	0.16385	5 122.2	16.6	0.17319	4292.2	981.1	1	3760.7	122.6	1	1391.8	859.8
23	1202085	115	.2	2.4	0.17766	3 126.9	17.5	0.185363	4502.8	638.3	1	4700.6	177.1	1	1496.4	948.2
24	1202085	101	.1	1.6	0.19799	5 126.6	15.2	0.216543	4606.3	1013.1	1	4734.9	66.1	1	1441.8	913.6
25	1202085	110	6	4.9	0.20124	3 121.1	5.5	0.209759	4461.3	719.8	1	4495.4	170.7	1	1338.9	869.2
26	1202085	115	9	8.3	0.23344	9 115	11.3	0.232679	4547.9	773.9	1	4244.7	128	1	1285.3	853.9
27	1202085				0.24798		11.2		4811.5	812	1	4787.8	157.7	1	1323	901.1
28	1202085	100	4	2	0.260493	3 106.6	5.4	0.266898	4314.8	911.2	1	4493.3	156.9	1	1128	795.7
29	1202085				0.29500			0.311743	4072.4	837.4	1	3992	388.6	1	976.7	731.3
30	1202085			11.9	0.19982		10.6		4645.1	722.8	0.99998	4678.5	199.5	0.999983	1485.2	867.7
31	1202085				0.21406		0.9	0.213994	4692.3	635.2	0.999994	4626.8	110.5	0.999992	1461.4	848.3
	1000000				0.40050			0.400000	4000.0	EEE O	0.000001	2070.0		0.000046	1 4 4 1 1 0	704.4

Figure 2-31 Example XXXXXX_qcinfo File for Group Gene Analysis

The qcinfo file contains statistics for various controls and allows you to access performance measures for the experiment. It contains raw data, not normalized data. The categories of controls reported in the file are described in the System Manual System *Controls* appendix for your specific product.

Table 2-5 d	qcinfo	Column	Descriptions
-------------	--------	--------	--------------

Column Heading	Description
ArrayID	Uniquely identifies the sample by combined BeadChip ID and position of the sample on the SAM or BeadChip.
All other column headings	 Names of control categories for which BeadStudio computes performance metrics. For each control category: AVG-Signal-XXX average signal of probes of a particular type (for example, probes corresponding to Cy3_hyb_low control targets) AVG-SeqVAR-XXX average standard deviation of probes corresponding to the same target transcript, where averaging occurs for all targets of the same type (for example, all genes, all housekeeping controls) AVG-Detection-XXX average detection 1-p-value for probes of a particular type MOTE: "XXX" is a probe type name. Types are described in the "System Controls" appendix in each Illumina product manual.

Creating the Mask File

If genomic DNA was used in a DASL Assay to verify probe performance, you can select probes that should be excluded from further analysis. Because all probes are designed to be intraexonic, all probes should be detectable when genomic DNA is used as a sample. Therefore, the Detection score reported in the *XXXXXX_gene_probe_profile* file can be used as an objective measure of probe performance on genomic DNA.

Illumina recommends excluding probes that have a Detection score of less than 1 on genomic DNA. However, you may define your own exclusion criteria.

In DASL mode, the *XXXXXX_gene_probe_profile* file contains an additional column, with the heading **0/1**. By default, this column will display a 1 in all rows containing probe-level data.

To exclude a probe:

- 1. Change the 1 to 0 in the **0/1** column.
- 2. Delete all the data columns between the **Probe_ID** column and the **0/1** column.
- 3. Save the file as a *.csv file in the same repository where the Content Descriptor file is stored. The file need not conform to a naming convention.

Any *.csv file present in the same repository as Content Descriptor files will appear in the Experiment Parameters pulldown menu. To avoid confusion, Illumina advises the use of separate repositories for Content Descriptor and for SAM/ BeadChip data.

Browse History

BeadStudio maintains a historical record of repository browse actions. To view your browse history, click the down arrow to the left of the Browse button (Figure 2-32).

Figure 2-32 Browse History Pulldown List

Clear or Copy Message Log Feature

To either copy the contents of the message log pane or to clear the message log pane, right-click anywhere in the pane, then click either **Copy** or **Clear** (Figure 2-33).



Figure 2-33 Message Pane Clear/Copy Button

NOTES	

Doc. # 11179632 Rev. B

1.800.809.ILMN (1.800.809.4566) or +1.858.202.4566 (outside North America) www.illumina.com

Chapter 3

Data Visualization

Topics

Introduction 3-2

- Accessing the Data Visualization Tools 3-3
 - From the New Experiment Wizard 3-3
 - From the BeadStudio Main Page 3-4

Scatter Plots 3-7

- Scatter Plot Context Menu Functions 3-16
- Finding Genes in the Scatter Plot 3-19
- Other Scatter Plot Functionalities 3-27
- Cluster Analysis 3-28
 - Analyze Clusters 3-30
 - Dendrogram Context Menu Selections 3-34
 - View the Sub-Tree List Directly in the Dendrogram 3-35

Copy/Paste Clusters 3-36

- From Scatter Plot to Dendrogram 3-36
- From Dendrogram to Scatter Plot 3-38
- Control Summary Reports 3-40
 - Control Summary Reports for DirectHyb 3-40
 - Control Summary Reports for the DASL[™] Assay 3-43

Introduction

This chapter describes BeadStudio's data visualization functions, used to create:

- Scatter plots (using Start scatter plot tool)
- Cluster analysis diagrams (dendrograms) (using Start cluster analysis tool)
- Control Summary Reports (using the Tools | Visualize Existing Data... menu bar selection)

Use these tools to explore the data you created using the Gene Analysis or Differential Expression Analysis tools (described in Chapter 2, *Experiment Creation & Analysis*).

Accessing the Data Access the data visualization functions either from the New Experiment Wizard (see below) or from the BeadStudio main page (page 3-4).

From the New Experiment Wizard

In the last dialog box displayed in the **New Experiment Wizard** (How do you want to view your data? pane -- Figure 3-1):

- 1. Select the radio button next to the desired tool.
- 2. Click OK.

The wizard will automatically launch the selected tool using the experimental data most recently processed.

View Brain vs Liver - April 27, 2005_gene_profile.csv	
How do you want to view your data?	
 Make scatter plots from the data 	
Make cluster diagrams from the data	
O Generate a Control Summary Report	
O View the folder containing this file	
OK Cancel	

Figure 3-1 How do you want to view your data? Dialog Box

From the BeadStudio Main Page

You can use the main page menu bar or tool bar to visualize your data. These two methods are described below.

- 1. At the menu bar:
 - a. Select Tools | Visualize Existing Data... (Figure 3-2).

Figure 3-2 Tools Menu

b. At the Please select the data file you want to visualize box, browse to your processed data output files, highlight the file you want to use (gene_profile, gene_probe_profile, or gene_diff), and click Open (Figure 3-3).

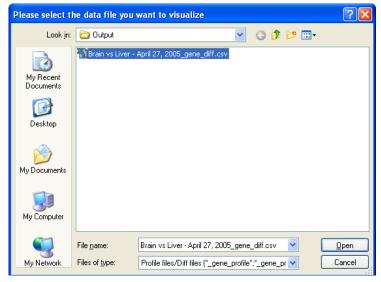


Figure 3-3 Browse to the Data File

3-5

NOTE:

Only files generated in column-oriented format are supported.

- c. At the next dialog box, **How do you want to view your data?** pane (same as shown in Figure 3-1), select the radio button next to the desired tool and click **OK**.
- d. BeadStudio will launch the selected tool using the experimental data you specified in step b, above.
- 2. As an alternate method, from the tool bar:
 - a. Click Start scatter plot *lect* or Start cluster analysis ⁴ (Figure 3-4).

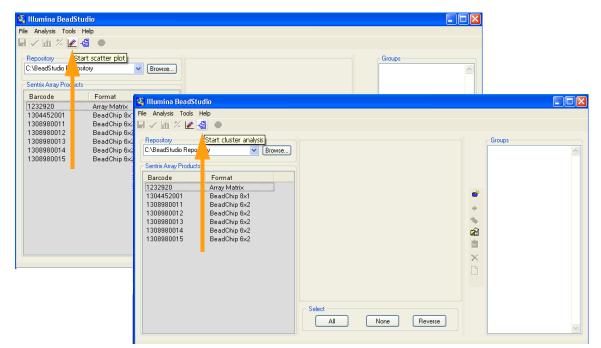


Figure 3-4 Start scatter plot and Start cluster analysis Tool Bar Buttons

- b. Browse to your processed data output files, highlight the file you want to use (gene_profile, gene_probe_profile, or gene_diff), and click **Open**.
- c. BeadStudio will launch the selected tool using the experimental data you specified in step b, above.

Scatter Plots

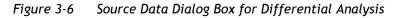
Once gene analysis or differential expression analysis has been completed, you can create Scatter Plots using BeadStudio output files.

NOTE:

You can generate scatter plots using either gene_profile, gene_probe_profile, or gene_diff files. The files must be column-oriented.

To create a Scatter plot:

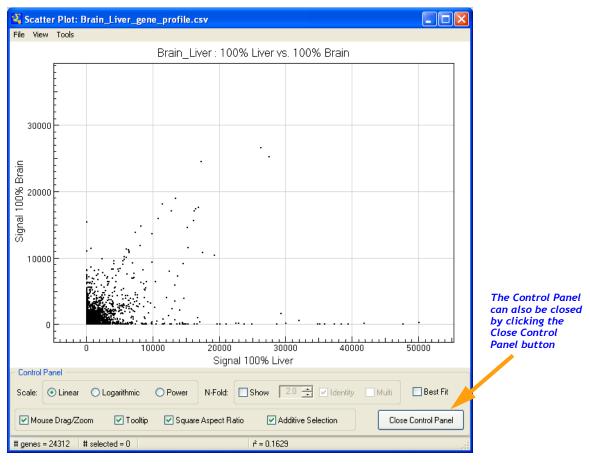
- 1. Open the **Scatter plot** tool (see Accessing the Data Visualization Tools on page 3-3).
- In the Scatter Plot Source Data dialog box (Figure 3-5), select the position you want for the XValues and click
 >>X Values.
- Next, select the position you want for the YValues, and click >>Y Values.


For Differential Expression, the X value is pre-set and unchangeable.

4. Click Create Scatter Plot to view the plot.

🛂 BeadStudio Scatter Plot: Treatment	t_vs_Control_gene_profile.csv 📃 🗖 🔀
Experiment Parameters Experiment Name = Treatment_vs_Control Array Content = BDCHP.&X1,REFSEQ2,BET/ Normalization = none DateTime = 3/16/2005 12:33 PM BeadStudio version 1.5.0.33 Manifest File = BDCHP.&X1,REFSEQ2,BETA Groups Liver Brain Kidney Heart Lung Position for Y Values highlighted	
Sort	
# of Groups = 5	

Figure 3-5 Scatter Plot Source Data Dialog Box


Σ	BeadStudio Scatter Plot:	Treatment	_vs_Control_gene	_diff.csv	
c	Experiment Parameters				
	Experiment Name = Treatment_v	/s_Control			
	Array Content = BDCHP.8X1,RE	FSEQ2,BETA	_PN11193506A_11193	418.xml	
	Normalization = rank invariant				
	DateTime = 3/16/2005 12:35 Pt	v			
	BeadStudio version 1.5.0.33				
	Manifest File = BDCHP.8X1,REF	SEQ2,BETA	PN11193506A 111934	18.csv	
ſ	Groups				
	Brain Liver				
	Kidney Heart		>>> X Values	Brain	
	Lung				
			>>> Y Values	not selected	
			Create ScatterP	lot	
		Sort			
# ol	f Groups = 5				

NOTE:

The X Value is automatically assigned the RefGroup for Differential Analysis. The X Value cannot be changed.

5. The Control Panel (Figure 3-7) displays automatically (to hide or close the Control Panel, from the Scatter Plot menu bar, select View | Control Panel).

ltem	Description
Scale	 Linear radio button When enabled, X and Y axes are on a linear scale Logarithmic radio button When enabled, X and Y axes are on a logarithmic scale Power radio button When enabled, X and Y axes are on nth root scale (where n is an odd number from 3 to 9)
N-Fold	 Show checkbox When checked, shows n-fold lines and allows you to select the fold value N-fold setting selector When Show is checked, allows you to select the fold change Identity checkbox When checked, BeadStudio displays the identity line in bold red color. If a gene is on this line, its X and Y intensities are equal. Multi checkbox When checked, BeadStudio displays additional incremental fold change regions

 Table 3-1
 Scatter Plot Control Panel Descriptions

Table 3-1 Scatter Plot Control Panel Descriptions (continued)

Item Description		
Options	 MouseDrag/Zoom checkbox When checked, allows you to drag and zoom in or out using the mouse. Use the mouse wheel to zoom in or out. If your mouse does not have a wheel: Press the Shift key while pressing the left mouse button. Prag to create a rectangle around an area to zoom in on. Prelease the Shift key and the mouse button to zoom. To return to normal view, from the Scatter Plot Tools menu (or the Scatter Plot context menu), select Auto Scale Axes. Tooltip checkbox When checked, Scatter Plot displays gene symbol and X/Y intensities as mouse hovers over the gene. Square Aspect Ratio checkbox When checked, any new gene selection will be added to the scatter plot, along with previous selections. When not checked, any new selection replaces the previous selection(s). Best Fit checkbox When checked, presents the Scatter Plot in the optimal fit for the genes of interest (linear equation is displayed in Control Panel next to r² values). Close Control Panel button Click to close the Control Panel.	
Status Bar	 # genes () = Displays the number of genes visible in the Scatter Plot, and the total number of genes (). # selected = Displays the number of selected genes in the Scatter Plot. Position pane Displays current X/Y position of gene (mouse pointer) on the Scatter Plot. 	
r ²	 Square of the correlation coefficient. r² NOTE: If the scatter plot is in linear scale, the r² value is calculated in linear space; if the scatter plot is in logarithmic scale, r² is calculated in log space. 	

6. To use a variety of plot tools, from the menu bar, click **Tools** (Figure 3-8).

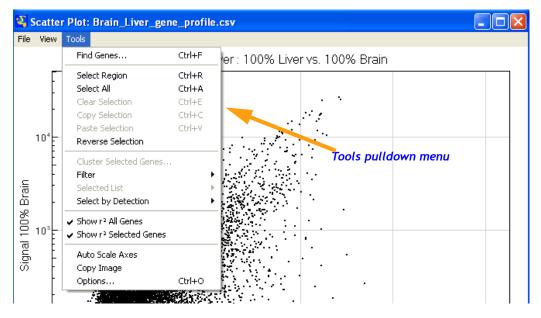


Figure 3-8 Scatter Plot Tools Menu

Table 3-2 describes the available tools.

Table 3-2 Scatter Plot Tools Menu Item Descriptions

Tool Name	Description	
Find Genes	 When selected, opens the Find Genes dialog box, where you can either: Enter a list of genes separated by commas (see Finding Genes in the Scatter Plot on page 3-19). OR Load a search gene list from a text file. NOTE: Use this tool to search for other things, such as definitions, etc. 	
Select Region	When selected, cursor becomes a crosshair you can use to draw a yellow boundary around any region in the Scatter Plot. All genes in this region become selected.	
Select All	When selected, all genes in the Scatter Plot are selected. When selected, genes are displayed in the currently selected color.	
Clear Selection	When selected, clears any previous selections.	
Copy Selection	When selected, places any previous selections to the clipboard.	
Paste Selection	When selected, pastes the contents of the clipboard to the current location. Genes can be copied/pasted across any scatter plots, dendrograms, and other applications (e.g., Notepad or Excel).	
Reverse Selection	······································	
Cluster Selected When selected, opens the Cluster Analysis Experiment Parameters wir allowing you to cluster based on data for selected genes.		
FilterWhen selected, allows you to filter genes shown on the scatter plot by fFilterselecting genes of interest, then clicking either Selected Genes or Unselected Genes. You can repeat filtering as many times as desired.		
Selected List	 When selected, allows you to: Save the selected gene list as a text file View the selected gene in a Web browser Show Gene Symbols 	
Select by Detection	When selected, opens the BeadStudio Select Detected Gene dialog box, where you can select your desired detection level. Enabled only when detection data is available.	
Select by Diff Score		

Table 3-2	Scatter Plot Tools Menu Item Descriptions (continued)
-----------	---

Tool Name	Description	
Show r ² All Genes	automatically recalculate the r ² . When unchecked in automatic	
Show r ² Selected Genes	When checked, each time the number of selected genes changes, BeadStudio will automatically recalculate the r^2 . When unchecked, no automatic recalculation occurs and no r^2 is displayed.	
Auto Scale Axes	When selected, automatically scales the Scatter Plot X and Y axes.	
Copy Image	When selected, copies the current image to the clipboard.	
Options	 Opens the ScatterPlot Options dialog box, in which you can set: Axes min/max values Displays the minimum and maximum X and Y axis values. When Square Aspect Ratio is NOT checked, you can set new X and Y axis values. Text and fonts for Scatter Plot labels Data Point size and scale Power for the scale (odd number, from 3 to 9, with 3 as the default) Colors for the Scatter Plot: Axes Background Grid Data Points Selection 	

Scatter Plot Context Menu Functions

Right-click anywhere in the Scatter Plot to view the context menu (Figure 3-9). The context menu contains features that can be applied to the selected object.

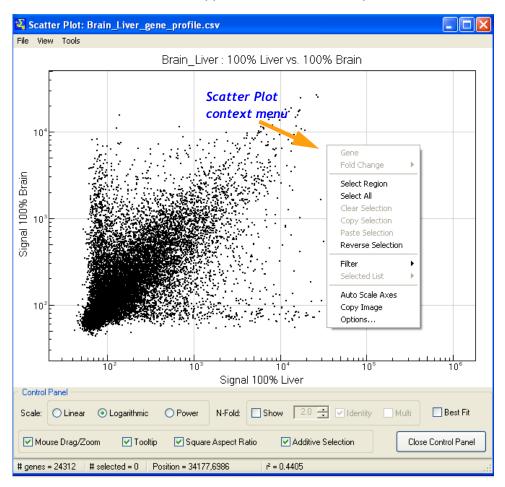


Figure 3-9 Scatter Plot Context Menu

Table 3-2 lists context menu items and their functions.

 Table 3-3
 Scatter Plot Context Menu Item Descriptions

ltem	Description	
Gene	When a gene is selected, displays the gene symbol.	
Fold Change	If fold change lines are present, displays the fold change limits for current cursor location. Allows you to select/de-select all genes inside the fold change.	
Select Region	When selected, cursor becomes a crosshair you can use to draw a yellow boundary around any region in the Scatter Plot.	
Select All	When selected, all genes in the Scatter Plot are selected and displayed in the currently selected color.	
Clear Selection	When selected, clears the existing selection.	
Copy SelectionWhen selected, places the existing selection on the clipboard.		
Paste Selection	When selected, pastes the contents of the clipboard to the current location.	
Reverse SelectionWhen selected, reverses the current selection (i.e., selected genes are unselected).		
FilterWhen selected, allows you to filter genes shown on the scatter plot by selecting genes of interest, then removing unselected genes from the s plot. You can repeat these steps as many times as desired.		
Selected List When selected, allows you to: - Save the selected gene list as a text file - View the selected gene in a Web browser - Show Gene Symbols		

ltem	Description	
Auto Scale Axes	When selected, automatically scales the Scatter Plot X and Y axes.	
Copy Image	When selected, places the Scatter Plot image on the clipboard.	
Options	 Axes Displays the minimum and maximum X and Y axis values. When Square Aspect Ratio is NOT checked, you can set new X and Y axis values. Labels Allows you to choose font properties for the Scatter Plot title, X axis, and Y axis. Data Points Allows you to select a point size and style for the Scatter Plot data points. Scale Allows you to select a power (3, 5, 7, or 9) for the Power setting. Colors Click in each box to bring up the color palette and set colors for: Axes Background Grid Data Points 	

Table 3-3 Scatter Plot Context Menu Item Descriptions (continued)

Finding Genes in the Scatter Plot

BeadStudio provides a path to gene property information, including gene ID, intensities, and gene ontology information.

1. From the Scatter Plot menu bar, select **Tools | Find Genes...** (Figure 3-10).

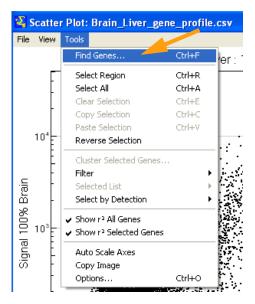


Figure 3-10 Find Genes... Tool Selected

- 2. At the **Find Genes** dialog box (Figure 3-11), select specific genes based on the following fields in their GenBank database records:
 - Gene ID
 - Symbol
 - Synonyms
 - Accession
 - Definition
 - Ontology

In the **Search in** pane, select the radio button next to the GenBank database field you wish to search.

🛂 Find Genes		•
Find what (search te	erms)	
Load from file		
- Search in		Gene Selection
⊙ Gene ID	Accession	⊙ Select ◯ Unselect
Symbol Oefinition		Search Method Description :
🔿 Synonyms 🔿 Ontology		The default search method is the Partial Match search method. Simply type one or more search terms in the 'find what' text box. If there are two or more search terms, they should be separated
Use Advanced Search Methods		by commas. This search is not case sensitive. Partial Match means that the search term must match a substring in the manifest data. For example, a 'gap,beta' search will find GAPD, GAPDS. RACGAP1, and P66beta.
 Partial 	l Match	
⊖ Exact	Match	
⊖ Wilde	ards	
O Regul	ar Expression	Find Close

Figure 3-11 Find Genes Dialog Box

3. In the Find what text field, enter the search text.

NOTE:

By default, searches are partial. For example, if you search the word 'VEGF' in the Symbol field, the search will return not only VEGF, but also, VEGFB and VEGFC.

Multiple search terms can be used, separated by commas.

Search terms can also be loaded from a text file. The file should have each term on a separate line.

4. Either:

- Click Select to select found genes using the current selection color (default).
 - You can change selection color by clicking the color box in the Gene Selection pane.
- Click Unselect to unselect found genes that were previously selected
- 5. Click **Find** to return to the Scatter Plot with the identified genes identified highlighted.
- For more advanced search options, check the Use box next to the Advanced Search Methods pane. These methods are described in the 'Search Method Description' box (Figure 3-11).

7. The Scatter Plot will display the selected gene in the color you selected (Figure 3-12). Zoom in for a better view.

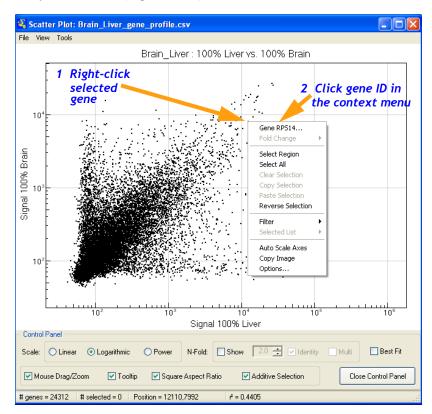


Figure 3-12 Zoom in to See Selected Genes

- 8. To bring up the Gene Properties: dialog:
 - a. Right-click the selected gene.
 - b. Click Gene Symbol in the context menu.

The following paragraphs illustrate the **Gene Properties:** dialog box functions.

Data Tab

Figure 3-13 illustrates the Gene Properties: window Data tab.

💐 Gene : RPS14 📃 🗖 🔀				
Data Manifest Ontology				
Experiment: Brain_Liver				
X: 100% Liver	Y : 100% Brain			
Signal = 12486	Signal = 7997			
Detection = 1.00	Detection = 1.00			
# Beads = 34	# Beads = 32			
ОК				

Figure 3-13 Gene Properties: Window Data Tab

Figure 3-14 illustrates the **Gene Properties:** window Data tab for differential expression.

🛂 Gene : GI_13259540			
Data Manifest Ontology			
Experiment: Experiment 1			
C X : Control	Y : Treatment 2		
Signal = 1842	Signal = 1954		
Detection = 1.00	Detection = 0.99		
# Beads = 28	# Beads = 29		
	Diff Score = 2.17		
Extra value (for Y scale only)			
ок			

Figure 3-14 Gene Properties: Window Data Tab

Manifest Tab

Figures 3-15, 3-16, and 3-17 illustrate functions of the **Manifest** tab.

 When you click the <u>Accession</u> link (Figure 3-15), BeadStudio jumps to the National Center for Biotechnology Information (NCBI) website (Figure 3-16) where you can view the record for the selected gene.

🛂 Gene : RPS14	
Data Manifest Ontology	
Target = GI_14141191-S	
Geneld = GI_14141191	
Transcript = GI_14141191	Click Accession link
Symbol = RPS14	
Accession = NM_005617.2	
Definition :	
Homo sapiens ribosomal protein S14 (RPS14), mRNA.	
ОК	

Figure 3-15 Gene Properties: Window Manifest Tab

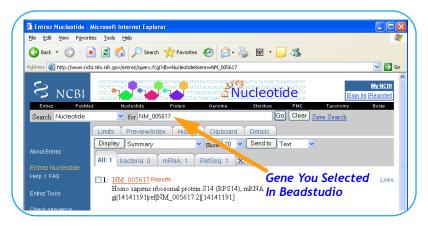


Figure 3-16 NCBI Website

2. Click the gene name to see the GenBank record (Figure 3-17).

5	EGETCAGGAT AN GACTT CONCIGET AGAINS ATEGGATE CECCEGGER OF ATTACTAGE TEGATEGATEG		
S NC			
PubMed	Nucleotide Protein Genome Structure PMC Taxonomy OMIM Books		
Search Nucle	otide 🔽 for Go Clear		
	Limits Preview/Index History Clipboard Details		
Display	GenBank 🗸 Send all to file		
Range: from	begin to end Reverse complemented strand Features: SNP CDD MGC		
HPRD			
and the second s	5617. Reports Homo sapiens ribo[gi:14141191]		
<u> </u>	topolo mono upielo noc[g. 111117]		
LOCUS	NM_005617 589 bp mRNA linear PRI 27-OCT-2004		
ACCESSION	NH_005617		
VERSION	NH_005617.2 GI:14141191		
KEYWORDS			
SOURCE	Homo sapiens (human)		
ORGANISM			
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;		
	Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.		
REFERENCE	1 (bases 1 to 589)		
AUTHORS	Kenmochi,N., Kawaguchi,T., Rozen,S., Davis,E., Goodman,N.,		
TITLE	Hudson, T.J., Tanaka, T. and Page, D.C.		
JOURNAL	A map of 75 human ribosomal protein genes Genome Res. 8 (5), 509-523 (1998)		
PUBMED	9582194		
FORMED	2207124		

Figure 3-17 NCBI Record

Ontology Tab

Figure 3-18 illustrates the **Ontology** tab. This tab provides a quick reference to the NCBI gene ontology information.

🧏 Gene : RPS14	
Data Manifest Ontology	
Synonyms : EMTB	
Ontology :	
go_component: cytosolic small ribosomal subunit (sensu Eukarya) [goid 0005843] [evidence P] [pmid 3529092]; go_function: structural protein of ribosome [goid 0003735] [evidence P] [pmid 3529092]; go_function: RNA binding [goid 0003723] [evidence P] [pmid 3785212]; go_process: protein biosynthesis [goid 0006412] [evidence P] [pmid 3785212];	
ОК	

Figure 3-18 Gene Properties: Ontology Tab

Other Scatter Plot Functionalities

- Click and drag to move the Scatter Plot around.
- Shift-click to zoom in to a particular region.
- Rotate mouse wheel to zoom in and out.
- Control-click, hold, and drag to select a specific gene or group of genes.

Cluster Analysis

Clustering is an analysis method used to group sets of objects into subsets or clusters. Objects assigned to the same cluster are more closely related to one another than objects assigned to different clusters. In the context of gene expression, the method can be used to answer two basic questions:

Which genes show similar patterns of gene expression across a series of samples?

Useful for identifying genes in common pathways, or genes that coordinately respond to the same stimuli.

Which samples are most similar based on the expression levels of genes within them?

Useful for identifying conditions that generate a common metabolic response. For example, in a toxicology study, if an unknown compound induces a pattern of expression similar to that induced by a panel of genotoxins, it is likely that the unknown is a genotoxin.

Mathematicians have devised dozens of clustering methods using different metrics to establish relationships between sets of values. In BeadStudio, clustering occurs using the agglomerative nesting with average linkage method. BeadStudio offers four clustering metrics for calculating dissimilarities:

Correlation

Computes the Pearson correlation using a 1 - r distance measure

Absolute Correlation

Computes the Pearson correlation using a 1 - |r| distance measure

Manhattan

Computes the distance between two points if a grid-like path is followed

Euclidean

Computes the shortest distance between two points

NOTE:

Generally, Illumina recommends using multiple clustering methods to validate results. Groupings with a true biological basis will usually show up regardless of the algorithm used.

Similarities and Distances

The first decision to be made is how "similarity" is to be defined. There are several ways to compute the similarity of two series of numbers. The most commonly used similarity metric is the Pearson correlation. The Pearson correlation coefficient between any two series of numbers $X = \{X_1, X_2, ..., X_N\}$ and $Y = \{Y_1, Y_2, ..., Y_N\}$

is defined as:

$$r = \frac{1}{N} \sum_{i=1,N} \left(\frac{X_i - \overline{X}}{\sigma_X} \right) \left(\frac{Y_i - \overline{Y}}{\sigma_Y} \right)$$

Distance is then defined as 1-r for Correlation and 1-|r| for Absolute Correlation. BeadStudio also uses Manhattan $(\Sigma | X_l - Y_l |)$ and squared Euclidean $(\Sigma (X_l - Y_l)^2)$ distances.

BeadStudio presents the clustering information in the form of a dendrogram, a tree-like structure whose branches correspond to genes or samples, depending on how the analysis is run. The distance on the X axis establishes the similarity relationships among the genes or samples. For example, if the dendrogram plots the similarity of samples based on gene expression, samples C and D are very similar to each other, less similar to B, and even less similar to A (Figure 3-19).

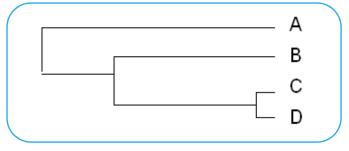


Figure 3-19 Dendrogram, Similarity Example

After clustering, nodes are reordered starting near the top to ensure that node "ar" is closer to "B" than node "al", and node "bl" is closer to "A" than node "br" (Figure 3-20).

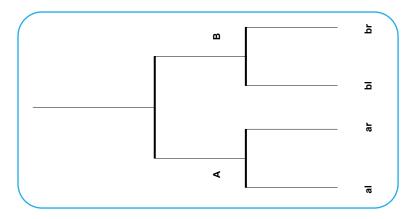


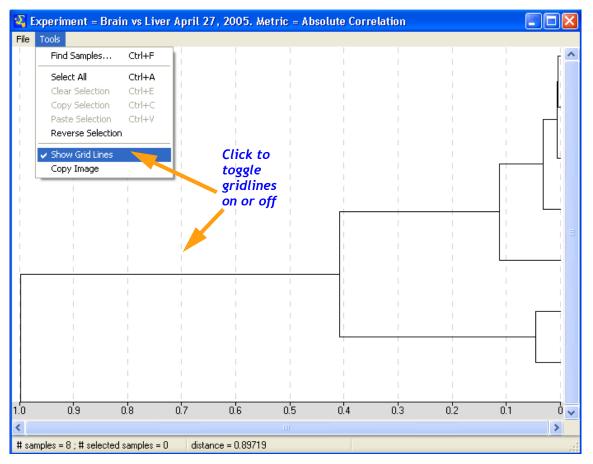
Figure 3-20 Dendrogram, Showing Nodes

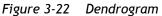
Analyze Clusters To analyze clusters:

- 1. Open the cluster analysis tool (see Accessing the Data Visualization Tools on page 3-3).
- 2. In the Cluster Analysis: dialog box (Figure 3-21):
 - a. **Groups** pane -- highlight the group(s) whose clusters you wish to analyze (or click **Select All**).
 - b. Enable the **Sort** checkbox to sort the items in "groups" list box alphabetically in ascending order.
 - c. Cluster pane -- Click Genes or Samples. If Genes is selected, the dendrogram will display a cluster of genes. If Samples is selected the dendrogram will display a cluster of samples.

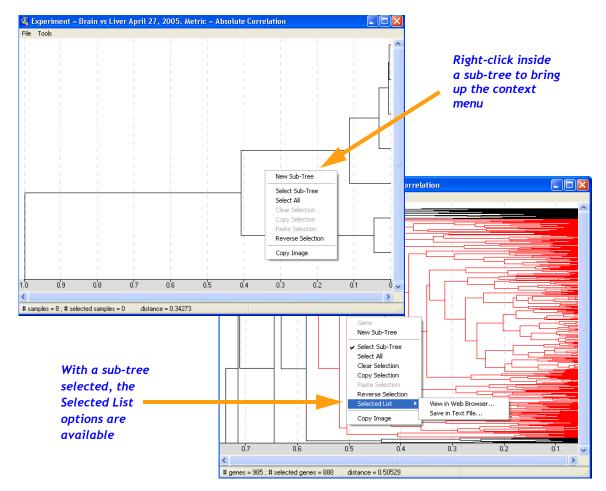
NOTE:

Clustering **Samples** is much faster than clustering **Genes**. Clustering many genes (thousands) can take hours. d. **Metric** pane -- Select the metric you would like BeadStudio to use to calculate clusters.


🍳 Cluster Analysis: Brain vs Liver April 27,	2005_gene_pr 🔳 🗖 🔀
Experiment Parameters Experiment Name = Brain vs Liver April 27, 2005 Array Content = BDCHP.8×1,REFSEQ2,BETA_PN1 Normalization = none DateTime = 3/14/2005 11:55 AM BeadStudio version 1.5.0.31 Manifest File = BDCHP.8×1,REFSEQ2,BETA_PN11	
Groups 1304452001_A 1304452001_B 1304452001_C 1304452001_E 1304452001_F 1304452001_G 1304452001_H	Cluster Genes Samples Metric Correlation Absolute Correlation Manhattan Euclidean
Select All Unselect All Sort	Create Dendrogram


Figure 3-21 Cluster Analysis Dialog Box

e. Click **Create Dendrogram** to view the graph (Figure 3-22).


The scale at the bottom of the dendrogram shows dissimilarity between modes. See *Similarities and Distances* on page 3-29.

Doc. # 11179632 Rev. B

3-33

3. Right click in the dendrogram to view the context menu (Figure 3-23).

Figure 3-23 Dendrogram with Context Menu

Dendrogram ContextTable 3-4 lists and describes the Dendrogram contextMenu Selectionsmenu items.

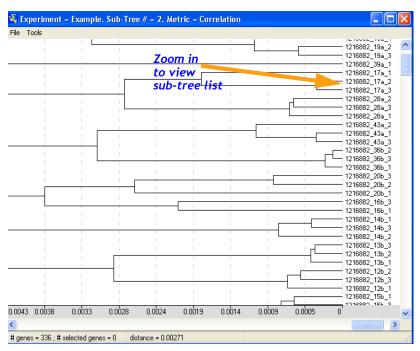
 Table 3-4
 Dendrogram Context Menu Descriptions

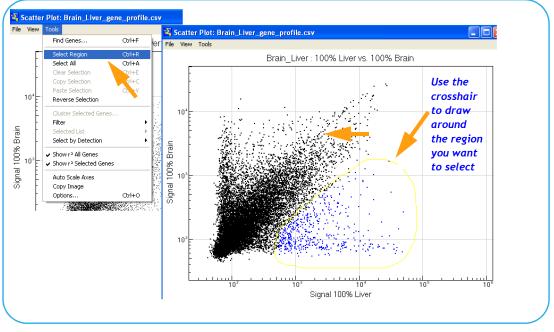
ltem	Description
New Sub-Tree	When selected, displays the selected sub tree in a new window. This feature is disabled when the cursor is outside of any tree.
Select Sub-Tree	When selected, highlights the sub-tree in green. This feature is disabled when the cursor is outside of any tree.
Select All	Click to select all sub-trees.
Clear Selection	Clears any selection.
Copy Selection	Copies current selection(s) to the clipboard.
Paste Selection	Pastes current clipboard contents to the location you choose.
Reverse Selection	Reverses the last selection made.
Selected List	 When a sub-tree is selected, click to select one of these two options: View in Web Browser Save in Text File
Copy Image	Copies current image to the clipboard.

3-35

View the Sub-Tree List Directly in the Dendrogram

To view the sub-tree list directly in the dendrogram, zoom in. The sub-tree list appears to the right of the dendrogram (Figure 3-24).



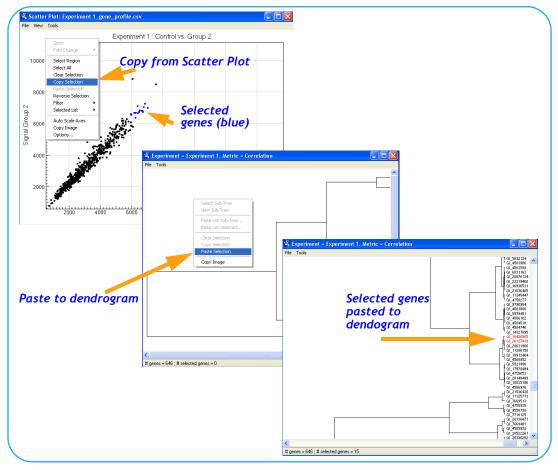

Figure 3-24 Zoom in to View Sub-Tree List

Copy/Paste Clusters

You can copy/paste gene clusters from a Scatter Plot to a dendrogram and vice versa. Refer to Figures 3-25 thru 3-28.

From Scatter Plot to Dendrogram

- 1. To select clusters for copying from the Scatter Plot,
 - Select Tools | Select Region from the pulldown menu.
 <u>OR</u>
 - Open the context menu and click Select Region.
- 2. Using the crosshair tool, draw around the genes you wish to copy.


Figure 3-25 Select Region

NOTE:

The selected genes will change color (blue by default, or the color you have set in **Scatter Plot Options**).

Doc. # 11179632 Rev. B

- 3. To copy the selection to the clipboard:
 - Select Tools | Copy Selection from the pulldown menu.
 <u>OR</u>
 - Open the context menu and click Copy Selection.
- 4. To paste the selection into the dendrogram:
 - Select **Tools** | **Paste Selection** from the pulldown menu. <u>OR</u>
 - Open the context menu and click **Paste Selection**.

Figure 3-26 Copy & Paste

- From Dendrogram to Scatter Plot
- 1. To select clusters for copying from the dendrogram, open the context menu and click **Select Sub-Tree**.

Be sure to click INSIDE the sub-tree you want to select. The selected sub-tree will turn red.

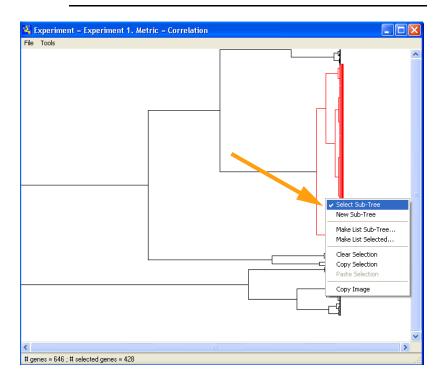


Figure 3-27 Select Sub-Tree

- 2. From the context menu, click Copy Selection.
- 3. To paste selection into the Scatter Plot:
 - Select Tools | Paste Selection from the pulldown menu. <u>OR</u>
 - Open the context menu and click **Paste Selection**.

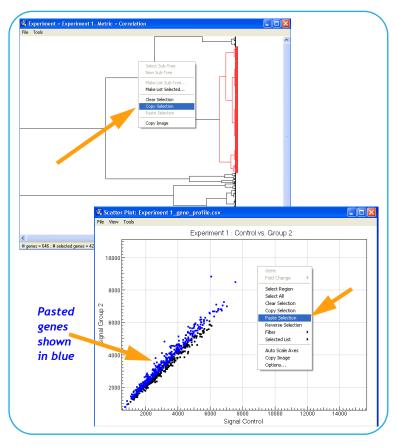


Figure 3-28 Copy & Paste

Control Summary Reports

The two following sections describe Control Summary Reports for DirectyHyb and the DASL m Assay.

Control Summary Reports for DirectHyb

BeadStudio can displays a graphic Control Summary Report for the selected samples based on performance of the built-in controls (Figure 3-29).

For more detailed information on the controls, see the System Controls appendix in the appropriate Illumina product manual.

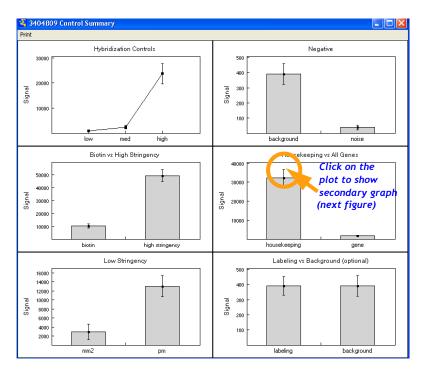


Figure 3-29 Control Summary Report

4. To view secondary graph(s), click on a data point in any of the graphs shown in Figures 3-29. Figure 3-30 illustrates an example of the secondary graph for housekeeping controls. Each point in the secondary graph represents a sample.

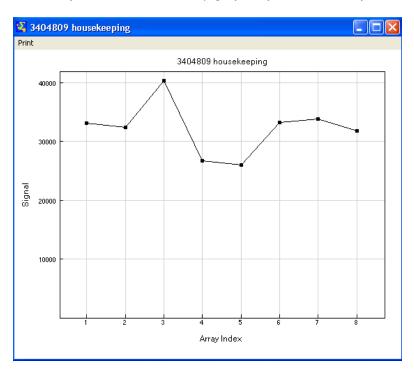


Figure 3-30 Housekeeping Controls Secondary Graph

 To copy, change the page setup, or see a print preview, right click in any graph to use the context menu (Figure 3-31). To print the graph, either right click and use the context menu, or click **Print** in the upper right-hand corner of the menu bar.

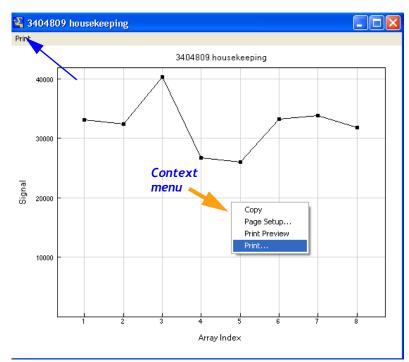


Figure 3-31 Control Summary Context Menu

Control Summary Reports for the DASL™ Assay

BeadStudio can display a graphic Control Summary for the selected samples based on performance of the built-in controls (Figure 3-32).

For more detailed information on the controls, see the "System Controls" appendix in the appropriate Illumina product manual.

Control Summary Reports

6. To view secondary graph(s), click on a data point in any of the graphs shown in Figure 3-32. Figure 3-33 illustrates an example of the secondary graph for contamination controls. Each point in the secondary graph represents a sample.

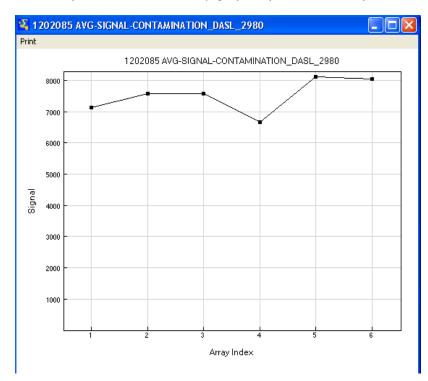


Figure 3-33 Contamination Controls Secondary Graph

 To copy, change the page setup, or see a print preview, right click in any graph to use the context menu (Figure 3-34). To print the graph, either right click and use the context menu, or click **Print** in the upper righthand corner of the menu bar.

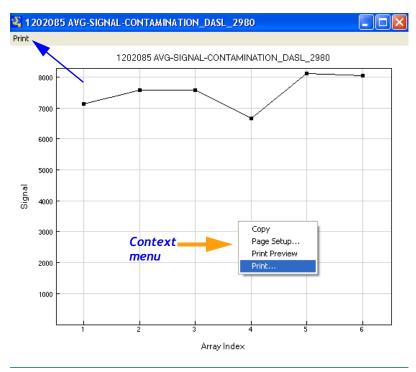


Figure 3-34 Control Summary Context Menu

Viewing Control Reports

To view control reports for any experiment at any time after analysis, open the **Control Summary Report** tool (see *Accessing the Data Visualization Tools* on page 3-3).

NOTES	

Chapter 4

Image Viewing

Topics

Introduction 4-2

▶ Using the Image Viewer 4-3

Introduction

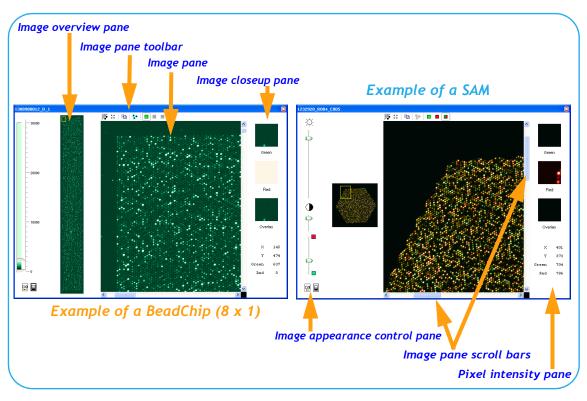
You can visually inspect any sample using the BeadStudio Image Viewer. Image Viewer allows you to view images and determine whether or not you want to include a particular sample(s) in your experiment.

In Image Viewer, you can:

- view registration information for individual samples
- adjust contrast
- see registration for BeadStudio-processed images
- zoom in or out
- see pixel intensities

Using the Image Viewer

Right-click on any sample to activate Image Viewer and view the BeadChip or Sentrix Array Matrix (SAM) image (Figures 4-1 and 4-2).


Table 4-1 lists and describes the Image Viewer features.

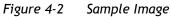

Illumina BeadStudio File Analysis Tools Heb Image: Ima	S Illumine BeadStudio Fle Analysis Tools Help S ✓ Int ≫ L S S
Sensibilities Revooled Sensibilities Revooled Barcode Product 1329200 Array Matrix 1304820011 BeadChip Bx1 1308800112 BeadChip Bx2 1308800113 BeadChip Bx2 130880017 BeadChip Bx2 130880017 BeadChip Bx2 130880018 BeadChip Bx2 130880019 BeadChip Bx2 130880012 Select All Nore Reverse	Proposadory Service Service Product 1232920 Product 1304930011 BeradChip Br-2 1308930012 BeradChip Br-2 1308930013 BeradChip Br-2 1308930014 BeradChip Br-2 1308930015 BeradChip Br-2 1308930016 BeradChip Br-2 1308930017 BeradChip Br-2 1308930018 BeradChip Br-2 1308930019 BeradChip Br-2 130893019 BeradChip Br-2 130893019 BeradChip Br-2 1308930118 BeradChip Br-2 1308930119 BeradChip Br-2 1308930119
	Right-click Iny sample SAM

Figure 4-1 Right-Click any Sample to Activate Image Viewer

6 x 2 BeadChip images contain two images per sample section. After right-clicking, you must select which image to view.

Feature	Description	
Image overview pane		-eye view of the sample image. Use the mouse low box, which determines the Image pane's
	*	Click the Auto Contrast button to reset the image contrast to default value.
	5.2 25	Click the Zoom Out button to return to the default image view.
		Click the Copy to Clipboard button to save an image to the clipboard for pasting into another application.
Image pane tool bar	•	Click to verify successful registration during data extraction on the BeadArray Reader. See <i>Overlay Cores</i> on page 4-7 for details.
		Click to see the green channel only.
	-	Click to see the red channel only.
		Click to see both red and green channels.
Image pane	slide wheel to c wheel, zoom int mouse button at zoom area and r	inspection of the sample image. Use the mouse ontrol the zoom level. If your mouse lacks a to a region by pressing the shift key and the left t the same time, then dragging to select the releasing the mouse button and shift key. To click the Zoom Out button

Table 4-1Image Viewer Features

1.800.809.ILMN (1.800.809.4566) or +1.858.202.4566 (outside North America) www.illumina.com

Table 4-1 Image Viewer Features (continued)

Feature	Description
Image closeup pane	Displays a closeup view of your image in the red and green color channels, and in a merged (overlay) view. The view region is determined by the location of your mouse pointer on the Image pane.
	Note: The red color channel is disabled for monochrome direct hyb images.
Image appearance control pane	Used to control image brightness, contrast, and color balance. See Figure 4-4 for details.
	Note: These controls affect only the appearance of the image on the screen; they do not change the underlying image file.
Image pane scroll bars	Allow you to change the viewing region in the Image pane.
Pixel intensity pane	Reports the X Y coordinates of your mouse pointer on the Image pane, along with the pixel intensity of that location.

Overlay Cores Click **Overlay Cores** to display the Image pane as shown in Figure 4-3. This feature allows you to verify that registration succeeded during data extraction on the BeadArray Reader.

The Overlay Cores tool only functions when viewing either the red channel or the green channel. It will not function when viewing both channels simultaneously.

Zoom in on a corner of the image to see blue circles overlaying the scanned sample image spots. A successful registration is indicated when the boundary of the blue-circle grid coincides with the sample pixel boundary.

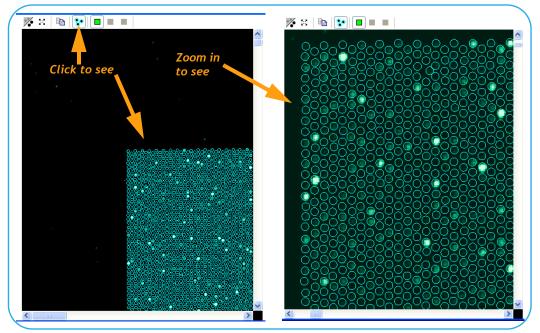


Figure 4-3 Overlay Cores Image

In rare cases, registration can fail. Contact Illumina Customer Solutions.

4-8 BeadStudio User Guide

Image Appearance	You can control image appearance in two different modes:
Control	Brightness/Contrast mode

Intensity Threshold mode

Use the mode selection buttons at the bottom of the pane to select the desired mode.

The Image appearance control pane components are described in Figure 4-4.

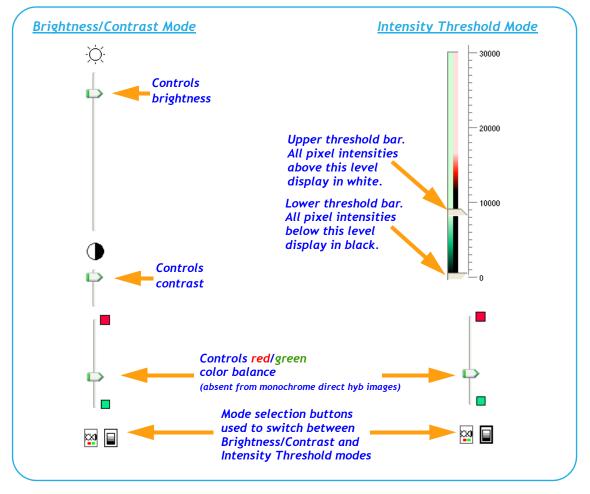


Figure 4-4 Image Control Pane Detail

Doc. # 11179632 Rev. B 1.800.809.ILMN (1.800.809.4566) or +1.858.202.4566 (outside North America) www.illumina.com

NOTES

1.800.809.ILMN (1.800.809.4566) or +1.858.202.4566 (outside North America) www.illumina.com

NOTES	

Chapter 5

Screen Elements

Topics

- BeadStudio User Interface Screen Elements 5-2
 - BeadStudio Example Screens 5-7

BeadStudio User Interface Screen Elements

Refer to Table 5-1 for brief descriptions of the menus, buttons, fields, and panes of the BeadStudio application screens.

 Table 5-1
 BeadStudio User Interface Screen Elements

Screen Element	Function
Мепи	Bar
File pulldown menu	 Allows you to: Name a new experiment. Run the New Experiment wizard. Open an existing experiment. Save an experiment. Save an experiment under a different name. Exit the BeadStudio application.
Analysis pulldown menu Illumina BeadStudio File Analysis Verify Sentrix Array Product 1304452001 Gene Analysis C. Differential Expression Analysis	Allows you to: - Verify a SAM or BeadChip. - Perform gene expression analysis. - Perform differential expression analysis.
Tools pulldown menu Illumina BeadStudio - Brain vs. Liver D File Analysis Tools Help Illumina beadStudio - Brain vs. Liver D File Analysis Tools Help Illumina Visualize Existing Data	Allows you to: - Make scatter plots - Make cluster diagrams (dendrograms) - Generate control summary reports - View folders containing processed data output files
Help pulldown menu	Displays version and copyright information about the BeadStudio application.

Doc. # 11179632 Rev. B

]

Screen Element	Function
Main Toolb	ar Buttons
Save experiment button	Click to save an experiment to the directory of your choice.
Verify Matrix/BeadChips button	Click to verify the uniformity of selected sample intensities.
Gene analysis button	Click to perform gene analysis for a default experiment.
Diff analysis button	Click to perform differential gene analysis for a default experiment.
Start scatter plot button	Click to create a scatter plot.
Start cluster analysis button	Click to create a dendrogram.

 Table 5-1
 BeadStudio User Interface Screen Elements (continued)

Table 5-1 BeadStudio User Interface Screen Elements (continued)

Screen Element	Function
Stop operation button	Click to stop any process you have asked BeadStudio to initiate.
Groups Tool	bar Buttons
New group button	Click to add a new Group (name an experiment).
Add to Group button	Click to add selected samples to the selected group in the Experiment pane.
Create a group for each sample button	Click to create a new experimental group for each selected sample.
Load from sample sheet button	Click to create and populate new experimental groups using a sample sheet (see Set Up & Apply Sample Sheet on page 2-28).
Apply group layout button	Click to create and populate new experimental groups using a group layout file (see <i>Set Up &</i> <i>Apply Group Layout Files</i> on page 2-25).

]

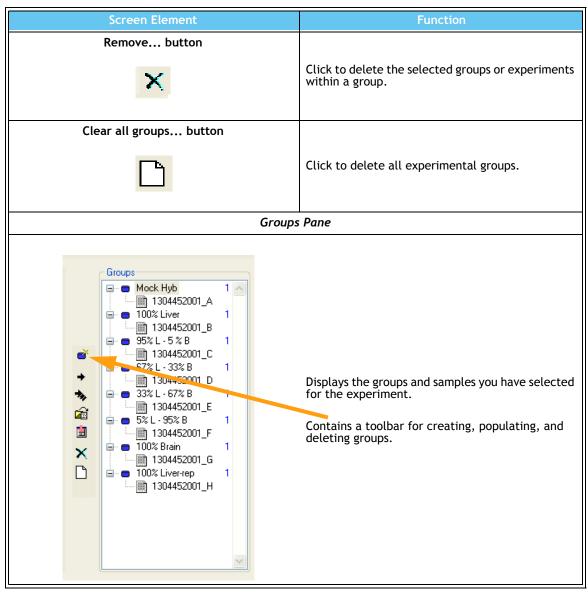


 Table 5-1
 BeadStudio User Interface Screen Elements (continued)

Table 5-1 BeadStudio User Interface Screen Elements (continued)

Screen Element	Function	
Select Pane		
Select Select A Nore B B <tr< th=""><th> Click individual samples to select them for any BeadStudio operation. Click All to select all samples on the BeadChip. Click None to de-select all samples on the BeadChip. Click Reverse to switch selected samples to deselected and vice versa. Ctrl-click individual samples to add them to or remove them from the selection. Click row and column labels to select or de-select entire rows and columns. </th></tr<>	 Click individual samples to select them for any BeadStudio operation. Click All to select all samples on the BeadChip. Click None to de-select all samples on the BeadChip. Click Reverse to switch selected samples to deselected and vice versa. Ctrl-click individual samples to add them to or remove them from the selection. Click row and column labels to select or de-select entire rows and columns. 	
Reposito	ry Pane	
Repository ♥ Browse Sentrix Array Products Barcode Format 1232920 Array Matrix 1304452001 BeadChip 8x1 13084980011 BeadChip 6x2 1308980012 BeadChip 6x2 1308980013 BeadChip 6x2 1308980014 BeadChip 6x2 1308980015 BeadChip 6x2 1308980015 BeadChip 6x2	 Click Browse to select the Repository containing the matrices you wish to analyze. In the Repository listbox, click the barcode you wish to analyze In the graphic display: Click individual samples to select them for any BeadStudio operation. Drag the mouse to select a group of SAMs or BeadChips for any BeadStudio operation. Click All to select all samples on the BeadChip. Click None to de-select all samples on the BeadChip. Click Reverse to switch selected samples to deselected and vice versa. 	
Message Log an	nd Status Pane	
Egnession table generation started Lusating data. Computing gene profile to: CleadBuild RepositoryGAM11079801107980; gene_profile.csv Computing profile and to: CleadBuild RepositoryGAM1107980; gene_profile.csv Computing to compute to: CleadBuild RepositoryGAM1107980; for 980, gene_profile.csv Computing to compute to: CleadBuild RepositoryGAM1107980; for 980, gene computer, and the computer of the co	Displays progress and error messages during any BeadStudio operation.	
DirecHigh Mode Imaging platform Side Tild		

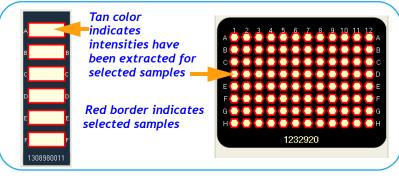
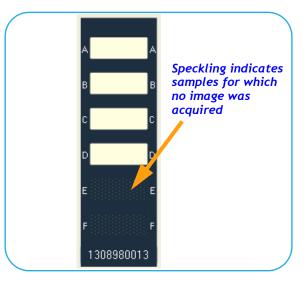
BeadStudio Example Screens

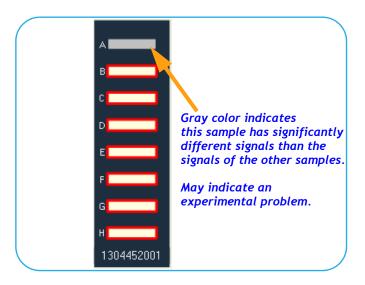
NOTE:

Refer to Table 5-2 and through 5-2 for color significance of displayed samples.

Table 5-2 Color Key for Displayed Samples

Sample Display Color	Definition
Red Outline	User has selected this sample for some action.
Tan	An extracted intensity file (.idat) exists for this sample. The sample is ready for gene expression analysis.
Speckled	No data exists for this sample (neither image nor extracted intensities).
Gray	The BeadStudio Verify Matrix/BeadChip task marked this sample as an outlier. This sample is suspected of having a registration problem or has significantly different intensity than the other samples (requires examination in Image Viewer).


Figure 5-1

Extracted Intensity Samples Shown in Tan

Unimaged Samples Shown as Speckled

Extracted Intensities, Problem Samples in Gray

NOTES

NOTES

Chapter 6

Normalization & Differential Analysis Algorithms

Topics

- Introduction 6-2
- A Non-Mathematician's Guide 6-2
 - Normalization Methods 6-2
 - Definitions 6-3
 - Background Method 6-3
 - Average Method 6-4
 - Cubic Spline Method 6-5
 - Hyb Controls Method 6-6
 - Rank-Invariant Method 6-7
- Normalization Algorithms 6-8
 - Background 6-8
 - Average 6-8
 - Cubic Spline 6-9
 - Hyb Controls 6-9
 - Rank Invariant 6-10
- Differential Expression Algorithm 6-11
 - Illumina Custom 6-11
 - Mann-Whitney 6-13
 - T-test 6-14
- Detection Score 6-14
 - Whole Genome BeadChips 6-14
 - Focused Array & DASL Products 6-15

Introduction

This chapter describes the statistical algorithms used in expression analysis for Sentrix[®] arrays.

A Non-Mathematician's Guide

Normalization All methods of normalization aim to improve data by Methods mathematically factoring out systematic errors among experimental groups so that their values can be compared. In the case of microarray experiments, systematic variation can result from variation in hybridization temperature, sample concentration, formamide concentration, etc. All forms of normalization achieve this result by making assumptions about the experimental samples and adjusting their values in a way that would factor out intensity changes arising from experimental variation without affecting changes based on true biological differences. The key to applying normalization effectively, therefore, is to understand the underlying assumptions of each method and deciding if they apply in the case of your experiment.

> The sections below describe the normalization methods available in BeadStudio. For more rigorous mathematical descriptions, please see *Normalization Algorithms* on page 6-8. For the sake of simplicity, the explanations describe normalization as applied to two samples (A and B). The same principles apply when multiple samples are normalized together.

Definitions When we speak of a sample, we refer to a single bundle on a Sentrix Array Matrix (SAM) or a single section of a Sentrix BeadChip. When we speak of a population of gene expression values, we refer to the set of all gene expression values received from a scan of a single sample. Therefore, normalization is a process by which two or more populations of gene expression values from two or more samples are adjusted for easier comparison. A scaling factor is a number by which values in one population are multiplied for the sake of normalization. For example, if a normalization technique multiplies all values in Sample B by 1.5 to normalize to Sample A, we say that a scaling factor of 1.5 was applied.

Background Method This method subtracts a constant background value from each gene expression value acquired from a scanned sample. The background value is derived by averaging the signals of negative control beads built into the SAM or BeadChip. These beads or oligos contain sequences not expected to hybridize to most DASL™ Assa genomes and thus provide a measurement of non-specific hybridization, non-specific dye signal and scanner background. For the DASL Assay, the negative controls This method makes no biological assumptions about the samples consist of oligos. and is thus safe to use when you have no expectations about the changes likely to exist between samples. Applying the technique allows for more quantitative assessments of fold-change differences, especially for genes with dim signals.

NOTE:

All other normalization methods described below apply background subtraction in addition to the other method-specific transformations.

Average Method This method simply adjusts the intensities of two populations of gene expression values such that the means of the populations become equal. For example if the mean value for all genes in Sample A is 300 and the mean for Sample B is 100, all genes on Sample B will have their values scaled (multiplied) by a factor of 3 such that both populations now have a mean of 300. This method assumes that the mean expression levels of all genes should be roughly equal and similarly distributed. This assumption is generally true when samples contain large numbers of genes (such as with a whole-genome sample). However, the assumption breaks down when smaller numbers of genes are used or the samples are quite different. For example, if one had a focused sample containing a few hundred neurological genes and then used this sample to compare brain and liver sample, one would expect the brain sample to yield higher values for biological reasons; the method would therefore not apply. On the other hand, if one were comparing two brain samples, the assumption would probably apply and the method would be valid.

Cubic Spline Method Cubic Spline normalization differs from all other methods described above in that it is non-linear. In other words, different scaling factors are applied to different parts of the population. The method first breaks the population of gene signals in each sample into a group of quantiles. If possible, the number of quantiles is chosen so that each interval contains 100 probe signals. However, the minimum number of quantiles is 15. For example, 3.3rd percentile, 10th percentile, 16.7th percentile and so on up to the 96.7th percentile. Then, for two samples to be normalized to each other, it scales the 3.3rd percentile of Sample B such that it is equal to the 3.3rd of Sample A, the 10th percentile of B to the 10th of A and so on for all quantiles. Genes whose values lie between quantiles are adjusted by interpolation of the neighboring quantiles.

> The benefit of this method is that it can normalize between samples that show a non-linear relationship, such as can happen as a result of unequal sample labeling, different scan settings, etc.

The method is unnecessary when there is a linear relationship among the un-normalized signals of the populations, and in these cases cubic spline normalization should not be applied. To determine if your data has a linear relationship, you can use the Scatter Plot tool (described in Chapter 3, *Data Visualization*) to generate a scatter plot of un-normalized gene expression for the two samples. If all gene signals from the samples are plotted against each other and show a generally linear relationship (such as in the left plot in Figure 6-1), the cubic spline normalization should not be applied.

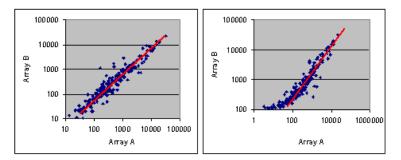


Figure 6-1 Sample A & Sample B

If there is a distortion in the linear relationship (as in the right plot in Figure 6-1), cubic spline may be applied and has the potential to correct the distortion.

Hyb Controls Method This method works like the 'Average' method above, except, instead of using the signal of all genes to calculate the scaling factor between samples, it uses signals of positive control probes. These probes are included in every sample and hybridize to corresponding labeled oligonucleotides contained in our standard hybridization buffers. The advantage of this approach is that it allows a signal-based normalization of samples while making no biological assumptions about the similarity of the samples. However, due to differences between the dyes used in the control oligonucleotides and those used in the RNA labeling, as well as pipette errors, the hyb controls may be imperfect proxies for the genes in your sample. Also, the Hyb Controls method does not allow correction for differences arising from sample labeling. For these reasons, this method should be applied with caution.

Rank-Invariant Method For most types of expression experiments, this is our most highly recommended normalization method. Like the Average method above, Rank-Invariant normalization uses a linear scaling of the populations being compared. However, unlike with averaging, the scaling factor is determined not by an average of all genes, but by only rank-invariant genes. 'Rank-invariant' genes are those whose expression values show a consistent order relative to other genes in the population. For example, a gene that is the 200th brightest gene in Sample A and 203rd in Sample B would be considered rank-invariant and would be used to arrive at the normalization factor; a gene that goes from 200th to 10,000th would not be rank-invariant and would not be used. This method is much more resistant to outliers than straight averaging is and generally gives better results. However, as with averaging, if samples are very different in their behaviors, the underlying assumption of rank-invariance (the existence of a subpopulation of genes whose expression is constant across samples showing consistent ranks) will not be true and the method should not be applied.

Due to the DASL Assay's oligo-directed nature, the assumption of similar behavior between samples is often not true. Although rank normalization is preferred for similar samples, the degree of similarity depends on: 1) gene expression in the samples analyzed; and 2) the genes chosen for the oligo pool. Illumina recommends examining un-normalized DASL data in scatter plots before choosing a normalization method for further analysis.

Normalization Algorithms

For all algorithms, normalization is computed with respect to a mathematically calculated "virtual" sample that represents averaged probe intensities across a group of samples. In the cases of spline and rank invariant normalizations, the virtual sample is computed based on the content of the reference group. If there is no reference group, the first group in the list of groups displayed in the Experiment pane is used for group analysis. For SAM/BeadChip analysis, the virtual sample is computed based on the content of the first alphanumeric entry in the upper-left area of the Matrix pane. For the hyb controls and average methods, all samples in the experiment are averaged to produce the virtual sample. A detailed description of normalization algorithms follows.

- **Background** The background value is derived by averaging the signals of built-in negative control Bead types. Outliers are removed using the median absolute deviation method.
 - Average Sample intensities are simply scaled by a factor equal to the ratio of average intensity of virtual sample to the average intensity of the given sample. Background is subtracted prior to the scaling.

Cubic Spline The method is similar to the one proposed by Workman et al.¹ The normalization uses quantiles of sample intensities to fit smoothing B-splines.

Let
$$q_i = \frac{(i-0.5)}{N}$$
, $i = 1, 2, ..., N$ be a vector of N quantiles
($N = max \left(15, \frac{N_{probes}}{100}\right)$). Here, N_{probes} is the number of

probes represented on an sample.

For each sample, we compute its vector of quantile intensities. Similarly, we compute quantiles for the "virtual" averaged sample after background subtraction. Cubic B-spline is computed and used for interpolation. For points with intensities ranked outside the $[q_1, q_N]$ interval, we use linear extrapolation rather than spline to avoid nonlinear effects outside the region of interpolation.

Hyb Controls Let k = 1 ..., N enumerate all samples used in the experiment. Then for sample k, normalization coefficients (a_k, b_k) are computed using iteratively re-weighted least-squares fit $y_v = a_k y_k + b_k$. Here, y_v, y_k are vectors of intensities of probes corresponding to hybridization controls on virtual and sample k, respectively. Tukey bisquare weight function with tuning constant 4.685 provides 95% efficiency when errors are normally distributed, while maintaining protection against outliers. Standard deviation of errors is estimated using median absolute deviation. Normalized intensities are

computed with $y_k^{new} = \frac{y_k - v_k}{a_k}$, and then background is subtracted. For further information on the use of hyb controls, see the System Manual System Controls appendix for your specific product.

Workman C. Jensen LJ, Jarmer H, Berka R, Gautier L, Nielser HB, Saxild HH, Nielsen C, Brunak S, Knudsen S. A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol. 2002 Aug 30;3(9):research0048. PMID: 12225587 [PubMed - indexed for MEDLINE]

Rank Invariant This method is exactly the same as *Hyb Controls* on page 6-9, except it uses a rank invariant set of probes between a given sample and a virtual sample instead of hybridization controls. The rank invariant set is found as follows: we start by considering probes with intensities ranked between LowRank=50th percentile and HighRank=90th percentile. If the probe's

relative rank change $\frac{|r_x - r_y|}{r_y} \le 0.05$, then the probe is considered

to be rank invariant. If less than 2% of all probes in the region are identified as rank invariant, then LowRank is gradually decreased until it reaches 25^{th} percentile.

Differential Expression Algorithm

All algorithms compare a group of samples (referred to as the condition group) to a reference group. The comparison is done using the following error models:

- Illumina custom
- Mann-Whitney
- T-test
- **Illumina Custom** This model assumes that target signal intensity (*I*) is normally distributed among replicates corresponding to some biological condition. The variation has three components: sequence specific biological variation (σ_{bio}), nonspecific biological variation (σ_{neg}), and technical error (σ_{tech}).

$$I = N(\mu, \sigma)$$

$$\sigma = \sqrt{\sigma_{tech}^2 + \sigma_{neg}^2 + \sigma_{bio}^2}$$

$$\sigma_{tech} = a + b < I >$$

Variation of nonspecific signal σ_{neg} is estimated from the signal of negative control sequences (using median absolute deviation). For σ_{tech} , we estimate two sets of parameters $(a_{ref}b_{ref})$ and (a_{cond},b_{cond}) for reference and condition groups respectively.

We estimate σ_{tech} using iterative robust least squares fit which reduces influence of highly variable genes. This implicitly assumes that the majority of genes do not have high biological variation among replicates. When this assumption does not hold we overestimate technical error by some averaged biological variation. When groups contain biological replicates, we produce p-values using the following approach:

$$\sigma_{ref} = \max(s_{ref}, a_{ref} + b_{ref} I_{ref})$$

$$\sigma_{cond} = \max(s_{cond}, a_{cond} + b_{cond} I_{cond})$$

$$p = \mathbb{Z} \left(\frac{\left| I_{cond} - I_{ref} \right|}{\sqrt{\frac{\sigma_{ref}^2 + \sigma_{neg(ref)}^2}{N_{ref}} + \frac{\sigma_{cond}^2 + \sigma_{neg(cond)}^2}{N_{cond}}}} \right)$$

where S_{ref} and S_{cond} are standard deviations of probe signals.

NOTE:

 N_{ref} and N_{cond} denote the number of samples in the reference and condition groups respectively.

We consider that standard deviations exceeding σ_{tech} reflects biological variation. However, we assume that estimates smaller than σ_{tech} are caused by random errors. Therefore, we use the larger of two estimates. Usage of σ_{neg} provides regularization for low abundance targets. Z is two-sided tail probability of standard normal distribution.

When reference and conditions groups contain one sample each, we can neither estimate sequence specific biological variation nor sample processing variation. Instead, we can only assess σ using bead type variation. Therefore, we penalize for that by a factor of 2.5 applied to parameter *b*. This factor was determined empirically from examination of real sample data.

$$p = \mathbb{Z}\left(\frac{\left|I_{cond} - I_{ref}\right|}{\sqrt{(a_{ref} + 2.5b_{ref}I_{ref})^2 + \sigma_{neg(ref)}^2 + (a_{cond} + 2.5b_{cond}I_{cond})^2 + \sigma_{neg(cond)}^2}}\right)$$

In DASL mode, this factor is 3.

ASL™ Assa

A DiffScore for a probe is computed as:

$$DiffScore = 10 \operatorname{sgn}(\mu_{cond} - \mu_{ref}) \log_{10}(p)$$

For the gene, DiffScores of corresponding probes are averaged. In addition, concordance between probes is reported.

In DASL, p-values are generated for red and green channels independently. These are averaged and the final p-value is generated from the distribution of the average of two independent uniform (0, 1) variables. If direction of intensity change is different for red and green signals, then the larger of p-values is replaced by 1 - p-value prior to averaging.

Concordance is defined as $\frac{|n_u - n_d|}{|n_u + n_d|}$ where n_u is the number of probes showing upregulated signal and n_d is the number of probes showing downregulated signal.

Mann-Whitney This implementation produces exact p-value if:

min $(N_{ref}, N_{cond}) < 3$

OR

min $(N_{ref}, N_{cond}) < 9$ AND max $(N_{ref}, N_{cond}) < 13$

Otherwise, normal approximation with continuity correction is used. Differential scores are computed as described for the Illumina Custom model (page 6-11).

6-14 BeadStudio User Guide

T-test When either the reference group or a condition group contains at least two samples, variance is estimated across replicate samples. Otherwise, variance is estimated from bead-to-bead variation*. We use t-test with the assumption of equal variance.

* Variance computed from bead-to-bead variation may significantly underestimate total variance. We recommend using Illumina Custom model in this case.

Differential scores are computed the same way as described for the Illumina Custom model (see page 6-7).

Detection Score

Detection scores are computed using negative control signals. Because Illumina's whole genome BeadChips contain large numbers of negative controls (1,000 - 2000), while its focused array and DASL products contain fewer negative controls, different algorithms are used for each type of product.

Whole Genome BeadChips

For whole genome BeadChips, the detection algorithm uses a large number of negative control probes.

Instead of using parametric assumptions, gene signals are ranked relative to the distribution of signals of the negative controls.

DetectionScore = R / N, where R is the rank of the gene signal relative to negative controls and N is number of negative controls. For groups containing multiple samples, the following modification is used. Let m be the number of samples in the group. On the ith sample, the gth gene signal is converted to a Z value and the average Z value across all m samples is computed.

$$Z_g = \frac{1}{m} \sum_i Z_g^i$$

Doc. # 11179632 Rev. B

$$Z_g^i = \frac{I - \mu_{neg}^i}{\sigma_{neg}^i}$$

Here μ_{neg}^{i} and σ_{neg}^{i} are the mean and standard deviation of signals of the negative controls on the ith sample. *I* is the signal from gene g. The same transformation that is applied to *I* is also applied to the signals of negative controls. Detection Scores are computed based on the rank of the Z value of a gene relative to the Z values of the negative controls.

Focused Array & DASL Products

Since these products typically contain small numbers of negative controls (20 - 40), their signals (with outliers removed using median absolute deviation) are modeled by normal distribution. The detection score for the probe with intensity I_{probe} is given by:

$$1 - Z\left(\frac{|I_{probe} - \mu_{neg}|}{\sigma_{neg}}\right)$$

Here, μ_{neg} is the average intensity of negative controls and σ_{neg} is the standard deviation of their signals. Z is the one-sided tail probability of standard normal distribution. For the gene represented by N probes we use:

$$1 - Z\left(\sqrt{N} \frac{|I_{gene} - \mu_{neg}|}{\sigma_{neg}}\right)$$

When experimental group contains M replicate samples, the average Z value of $Z_1,...,Z_M$, computed for each sample independently, is assumed to follow a normal distribution

$$N\left(0, \sqrt{\frac{1+(M-1)r}{M}}\right)$$

where r is the average correlation coefficient of signals of negative controls.

Averaging is done across all pairs of different samples.

In DASL mode, detection p-values (1 - DetectionScore) in red and green channels are computed independently. Their average is assumed to follow distribution of the average of two independent variables distributed uniformly on the interval (0,1). The p-value is generated from that distribution and converted to DetectionScore as 1-pvalue.

NOTES

1.800.809.ILMN (1.800.809.4566) or +1.858.202.4566 (outside North America) www.illumina.com

NOTES

Doc. # 11179632 Rev. B

1.800.809.ILMN (1.800.809.4566) or +1.858.202.4566 (outside North America) www.illumina.com