Bioinformatics discovery of new disease drivers from genomic, proteomics, and metabolomics data

Andrew P. Hodges, Ph.D. ahodges@sbpdiscovery.org SBP 3 May 2016

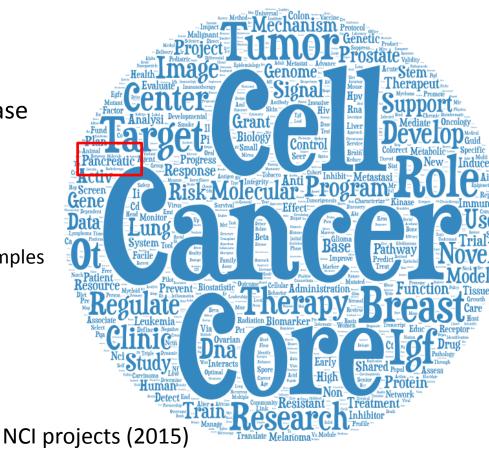
Viper-KR*

- Viper-KR applied to human tissue (obesity / adipose tissue) and cell culture transcriptome.
- Data from the Translational Research Institute (TRI) for Metabolism and Diabetes, SBP-Florida Hospital (PI Steven Smith)
- The results are promising: multiple computationally predicted gene targets were validated experimentally (7 out of 12)

Viper - Virtual Inference of Protein-activity by Enriched Regulon analysis (Mariano J. Alvarez, Federico Giorgi, Andrea Califano). KR – K-nearest neighbor and Random Forest.

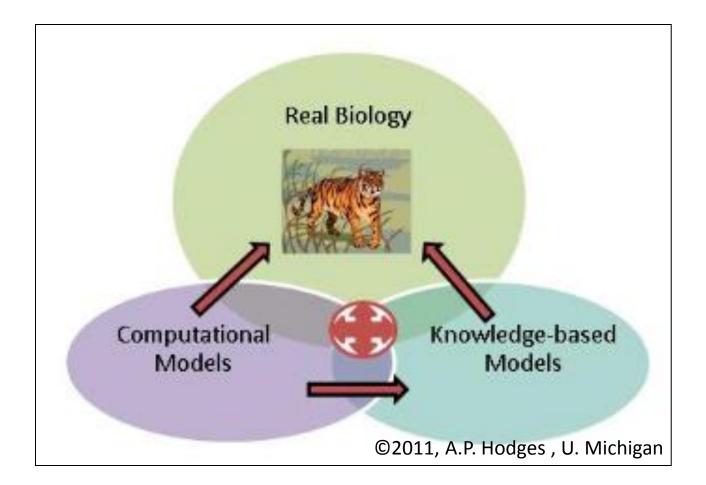
Overview

- Pt1 Introduction/Background
- Pt2 Resources
 - Public and proprietary data sources
 - Selected software and underlying algorithms
- Pt3 Example Service: Master regulator/driver predictions
 - Example models from in vitro and clinical studies
 - New gene/protein drivers for follow-up confirmation
 - Integration against knowledge repositories/other resources


Pt1 - Introduction

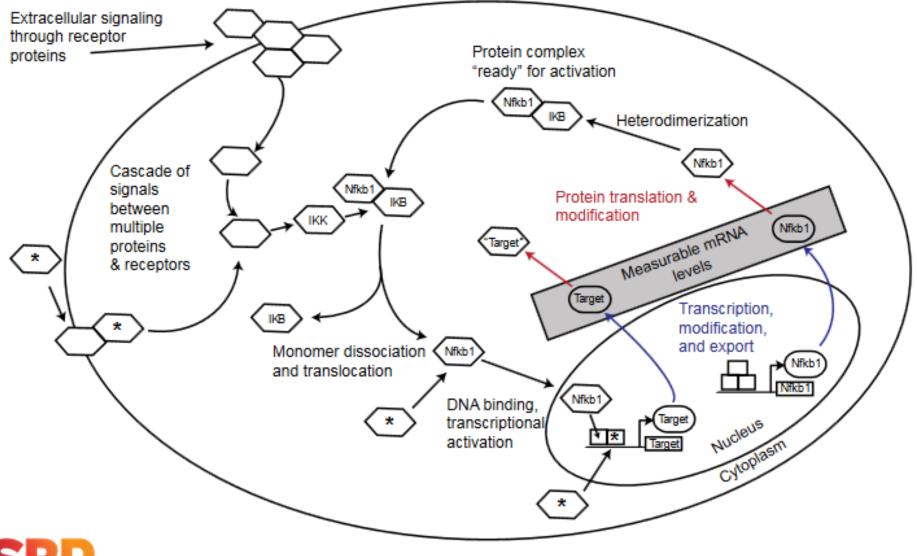
Bioinformatics

- Major driver in current cancer research
- Oftentimes an afterthought
- *Should be the driver/guide for your studies!
- Quest for drivers/controllers of disease
 - Not cancer-specific... conceptually any disease
 - Molecular signatures guiding disease processes and drug responses
 - Limited by type(s) of data & available samples



Major question today:

What are the drivers of pancreatic cancer progression in gemcitabine-treated patients?

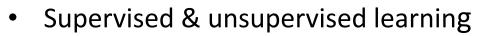


"Standing on two legs" -A. Eroshkin

General framework for modeling (with opportunities & caveats): Transcriptional network inference

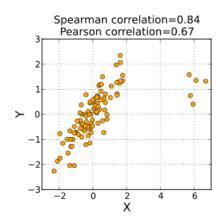
SBP

©2011, A.P. Hodges , U. Michigan

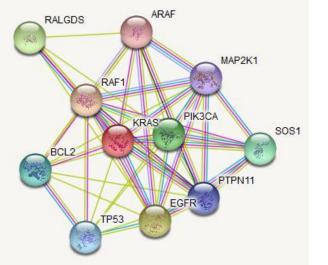

Machine learning: moving towards identifying drivers/controllers of processes & diseases

- Naïve classic approach:
 - What are the best correlated interactors with my gene?

Pearson correlation (distance)

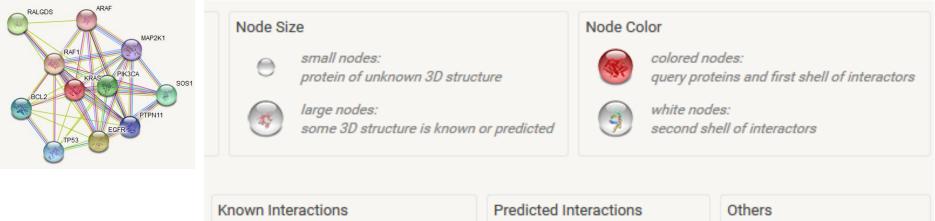

< Spearman correlation (rank)

< Mutual information (probability)


- Is some prior knowledge used to guide/train predictions?
- Identify factors influencing overall data behavior (e.g. PCA/dimensional redu.)
- Many options for modeling:
 - SVMs, flux models, neural nets, ODE/PDE, fuzzy logic clustering, MI/BN models, ABMs, etc. --
- Network models: can represent results from these approaches (e.g. Viper)

Networks & centrality

- Assumption that 'drivers' are correlated with some disease phenotype
- Often assumed to be 'highly connected' to other pathway elements
- Hairball view... not interpretable!
- Network lingo:
 - Node/circle : represents gene/protein/molecular entity in some dataset/database
 - Edge/line/arrow: represents some interaction or inference


Knowledge-based and/or data-driven?

http://string-db.org/cgi/network.pl?taskId=2_rT3n5wjcWL

- Edges can represent either known or putative interaction
 - Depends on knowledge database and/or algorithm
 - Type of interaction or inference can vary:
- **Know the interactions' provenance
 - Also, experimental/biological context of interactions? Instrumentation?

Neighborhood Gene Fusion	Cooccurence Coexpression	Experiments	Databases	Textmining	[Homology]	Score	
		٠	٠	٠		0.9	999
			٠	٠		0.9	999
		٠	٠	٠		0.9	998
		٠		٠		0.9	997
			•	•		0.9	993

- from curated databases

-

experimentally determined

gene co-occurrence

textmining

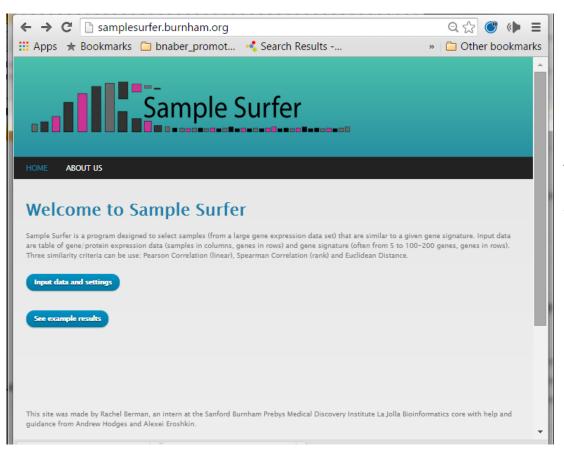
co-expression

, protein homology

Pt2 – Some computational resources

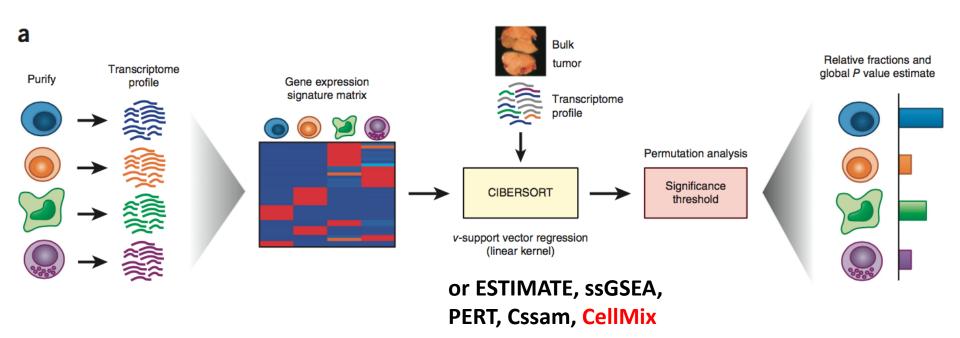
Recommended tools (DIY!):

SANFORD BURNHAM PREBY


***Google it! – thousands of resources available on the web (Github also)

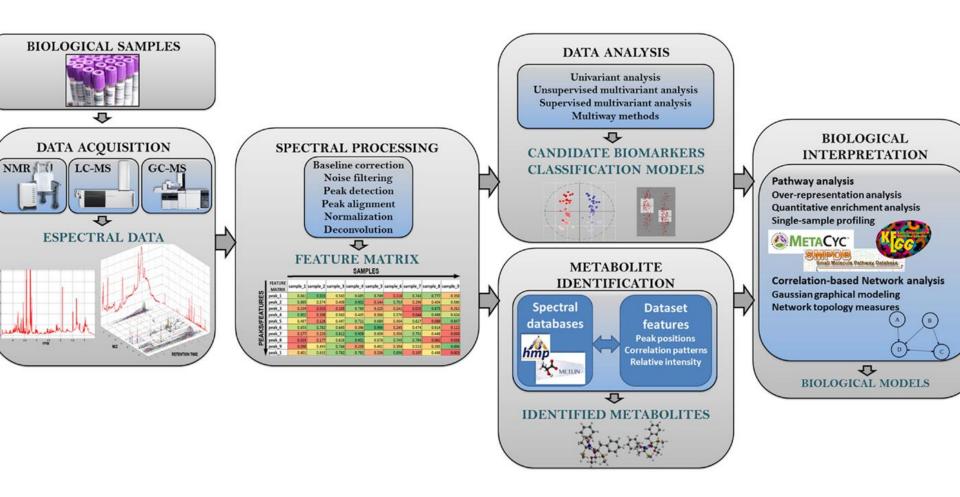
New tools/services we offer

- Computational pipeline for CRISPR/Cas9 knockout screens (our development) from reads to "differentially affected sgRNA"
- Viper-KR identifies master regulator genes
- **MetaboAnalyst** integrative analysis of metabolic and genomic data
- **ChAMP** Methylation data analysis pipeline
- Our tool: Sample Surfer* selects samples (from a large gene expression data set) that are similar to a given gene/protein signature
- Our tool: Regulattice* interactive analysis environment to analyze regulatory modules identified through machine learning, e.g., visualization of VIPER results
- FireBrowse A simple and elegant way to explore cancer data.


<u>http://samplesurfer.burnham.org</u> - intranet <u>http://samplesurfer.SBPdiscovery.org</u> - outside of SBP

selects samples (from a large gene expression data set) that are similar to a given gene/protein signature

Godzik lab: How to measure host immune response from expression data? *Courtesy: A. Leblanc, Godzik Lab*



Modified figure from Newman et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015 12:453-7.

**Also noteworthy: Cancer3D for identifying cancer driver mutations (structural basis) and drug targeting (<u>http://cancer3d.org</u>)

Metabolomics basic example:

Analytical methods in untargeted metabolomics: state of the art in 2015 http://journal.frontiersin.org/article/10.3389/fbioe.2015.00023/full

ΤοοΙ	Type Target		Features ^a	Website	Reference	
MetaboAnalyst2	Web	MS and NMR	1–7	http://www.metaboanalyst.ca/	Xia et al. (2012)	
XCMS	R	MS	1–3	http://metlin.scripps.edu/xcms/	Smith et al. (2006)	
MetSign	MatLab	MS	1–3	http://metaopen.sourceforge.net/	Lommen and Kools (2012)	
XCMS online	Web	LC-MS	1–4	https://xcmsonline.scripps.edu/	Tautenhahn et al. (2012b)	
MAVEN	Application	LC-MS	1–7	http://genomics-pubs.princeton.edu/mzroll	Melamud et al. (2010)	
mzMine2	Application	LC-MS	1–5	http://mzmine.sourceforge.net/	Pluskal et al. (2010)	
MAIT	R	LC-MS	1–5	http://b2slab.upc.edu/software-and-downloads	Fernández-Albert et al. (2014	
OpenMS	Application	LC-MS	1–3	http://open-ms.sourceforge.net/	Sturm et al. (2008)	
Metabolome express	Web	GC-MS	1–5	https://www.metabolome-express.org/	Carroll et al. (2010)	
Metabolite detector	Application	GC-MS	1–4	http://md.tu-bs.de/	Hiller et al. (2009)	
MetDAT	Web	MS	1–5	http://smbl.nus.edu.sg/METDAT2/	Biswas et al. (2010)	
FOCUS	MatLab	NMR	1–4	http://www.urr.cat/FOCUS/	Alonso et al. (2013)	
Automics	Application	NMR	1-2, 5	https://code.google.com/p/automics/	Wang et al. (2009)	
Bayesil	Web	NMR	1–4	http://bayesil.ca/	Ravanbakhsh et al. (2014)	
Speaq	Application	NMR	1-2, 5	https://code.google.com/p/speaq/	Vu et al. (2011)	
MetaboLab	Application	NMR	1–2, 5	http://www.nmrlab.org.uk/	Ludwig and Gunther (2011)	
rNMR	R	NMR	8	http://rnmr.nmrfam.wisc.edu/	Lewis et al. (2009)	
MetaboMiner	Application	NMR	8	http://wishart.biology.ualberta.ca/metabominer/	Xia et al. (2008)	
Muma	R	-	5	http://cran.r-project.org/web/packages/muma	Gaude et al. (2013)	
MetaXCMS	R	MS and NMR	5	http://metlin.scripps.edu/metaxcms/	Tautenhahn et al. (2010)	
BATMAN	R	NMR	3–4	http://batman.r-forge.r-project.org/	Hao et al. (2012)	
AStream	R	LC-MS	4	http://www.urr.cat/AStream/AStream.html	Alonso et al. (2011)	
Camera	R	LC-MS	4	http://metlin.scripps.edu/xcms/	Kuhl et al. (2011)	
MetaboHunter	Web	NMR	4	http://www.nrcbioinformatics.ca/metabohunter/	Tulpan et al. (2011)	
MetScape	Application	-	6–7	http://metscape.ncibi.org/	Gao et al. (2010)	
IMPaLA	Web		6-7	http://impala.molgen.mpg.de/	Kamburov et al. (2011)	
MetExplore	Web	-	6–7	http://metexplore.toulouse.inra.fr/	Cottret et al. (2010)	
MetPA	Web	-	6–7	http://metpa.metabolomics.ca/	Xia and Wishart (2010a)	
Cytoscape	Application	-	7	http://www.cytoscape.org/	Smoot et al. (2011)	
Vanted	Application	-	7	http://vanted.ipk-gatersleben.de/	Rohn et al. (2012)	
Paintomics	Web	-	7	http://www.paintomics.org/	García-Alcalde et al. (2011)	

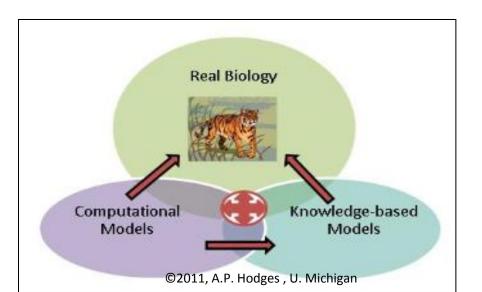
ovides a complete and updated list of the open-source software that is commonly used in the untargeted analysis of metabolomic data.

analysis (5), pathway analysis (6), pathway visualization (7), and 2D-NMR analysis (8).

Human Metabolite DB: HMDB (www.hmdb.ca/downloads)

Useful annotation source

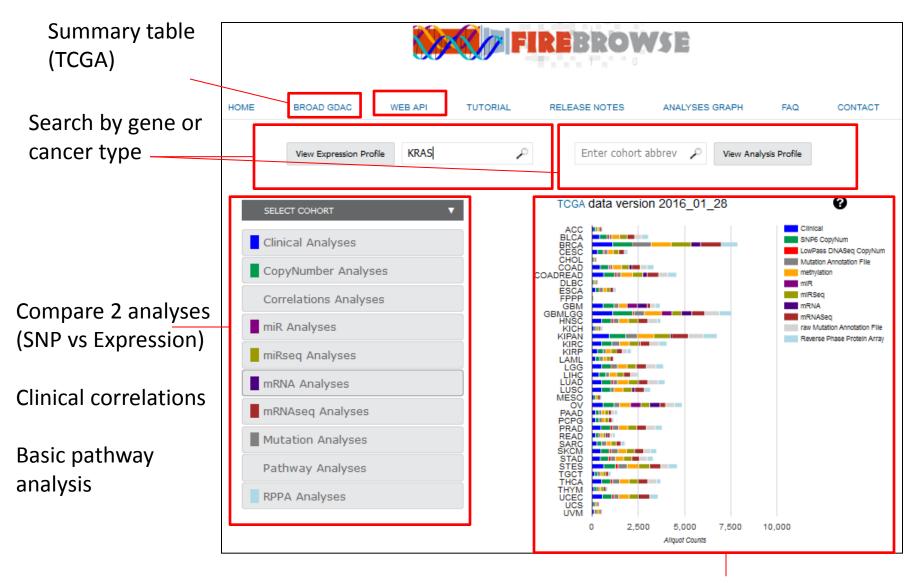
Rival identifier to PubChem ID, ChEBI, compound name, etc.


Used in MetaboAnalyst

itre				
Version 1.0 Version 2.5	Current Version (3.6)			
Protein/Gene Sequen	ces (in FASTA Fo	ormat)		
Data Set		Released on	Protein Sequences	Gene Sequences
All Metabolite Metabolizing En	zymes	2016-04-24	Ownload	Ownload
Structures (in SDF Fo	rmat)			
Data Set			Released on	SDF File
Metabolite Structures			2016-04-24	Oownload
Metabolite and Proteir	n Data (in XML fo	ormat)		
Data Set			Released on	XML File
All Metabolites			2016-04-24	Ownload
All Proteins			2016-04-23	Download
Spectra				
Data Set				Download Link
Mass Spectra Image Files				Ownload
GC/MS Peak Lists				Ownload
NMR Spectra FIDS Files				Download
NMR Spectra Peaklist Files				Download

MetaCore & MetaDrug ('the right leg')

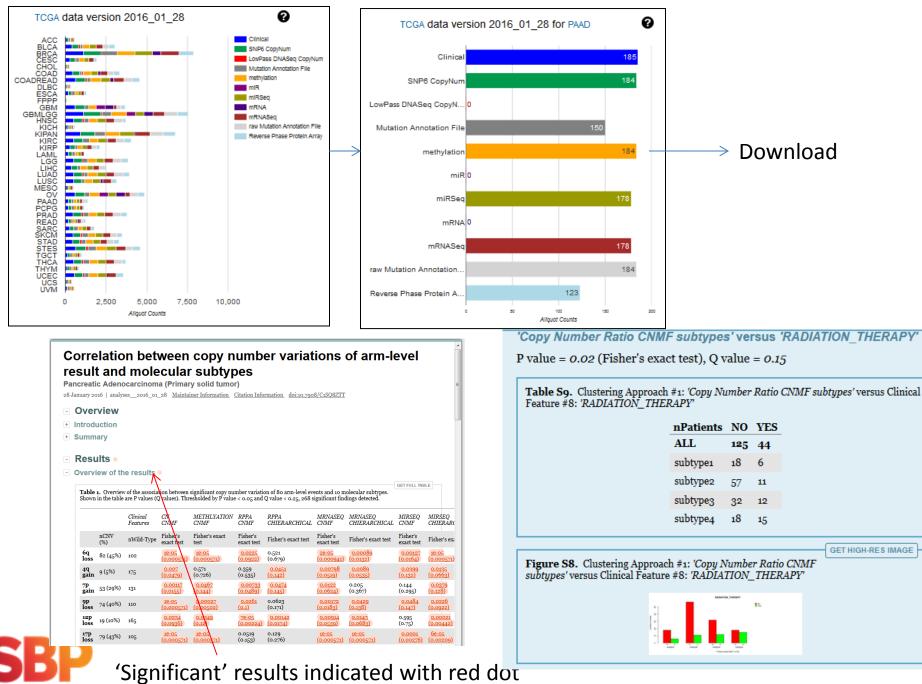
- Powerful tool for searching hubs, known/curated interactions across multiple biological scales/types, drug targeting, etc.
- Great companion to predictions obtained from machine learning
- Used to validate predictions from Viper/master regulator predictions
- NextBio
- IPA


Genomespace (DIY sandbox)

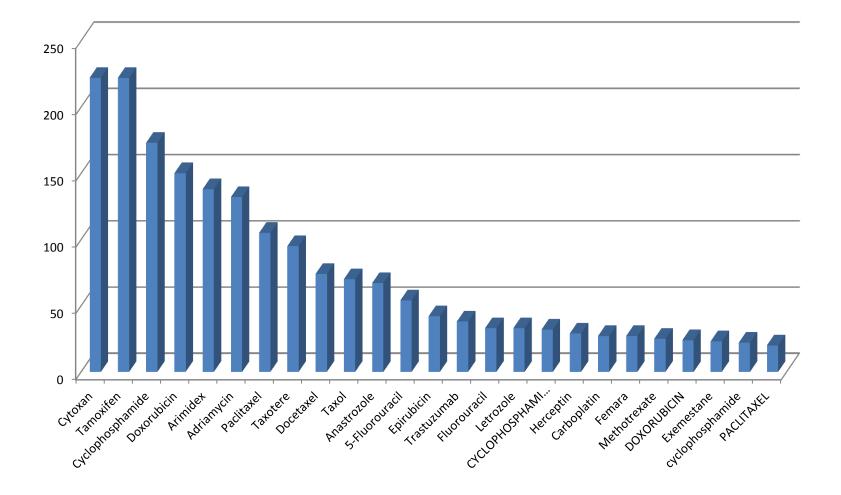
http://genomespace.org/

- Many tools for next-gen data analyses (Broad Inst. & others)
- Public data championed by TCGA and other sites
- Personal workspace with 30+gb storage
- Also, **geWorkbench** in GenomeSpace for AracNe
 - <u>http://wiki.c2b2.columbia.edu/workbench/index.php/Home</u>
 - Sometimes unstable/memory issues (Java-based)

Download data directly (clickable image)

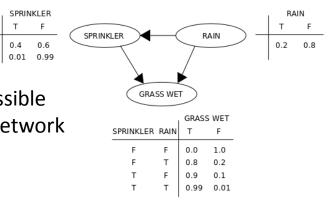


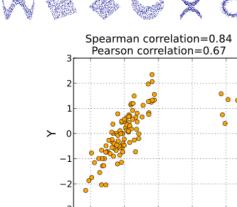
Broad GDAC


Disease Name	Cohort	Cases	Analyses	Data
Adrenocortical carcinoma	ACC	<u>92</u>	Browse	Browse
Bladder urothelial carcinoma	BLCA	412	Browse	Browse
Breast invasive carcinoma	BRCA	1098	Browse	Browse
Cervical and endocervical cancers	CESC	307	Browse	Browse
Cholangiocarcinoma	CHOL	51	Browse	Browse
Colon adenocarcinoma	COAD	<u>460</u>	Browse	Browse
Colorectal adenocarcinoma	COADREAD	<u>631</u>	Browse	Browse
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma	DLBC	<u>58</u>	Browse	Browse
Esophageal carcinoma	ESCA	185	Browse	Browse
FFPE Pilot Phase II	FPPP	38	None	Browse
Glioblastoma multiforme	GBM	613	Browse	Browse
Glioma	GBMLGG	1129	Browse	Browse
Head and Neck squamous cell carcinoma	HNSC	528	Browse	Browse
Kidney Chromophobe	KICH	113	Browse	Browse
Pan-kidney cohort (KICH+KIRC+KIRP)	KIPAN	973	Browse	Browse
Kidney renal clear cell carcinoma	KIRC	537	Browse	Browse
Kidney renal papillary cell carcinoma	KIRP	323	Browse	Browse
Acute Myeloid Leukemia	LAML	200	Browse	Browse
Brain Lower Grade Glioma	LGG	516	Browse	Browse
Liver hepatocellular carcinoma	LIHC	377	Browse	Browse
Lung adenocarcinoma	LUAD	585	Browse	Browse
Lung squamous cell carcinoma	LUSC	504	Browse	Browse
Mesothelioma	MESO	87	Browse	Browse
Ovarian serous cystadenocarcinoma	ov	<u>602</u>	Browse	Browse
Pancreatic adenocarcinoma	PAAD	185	Browse	Browse
Pheochromocytoma and Paraganglioma	PCPG	<u>179</u>	Browse	Browse
Prostate adenocarcinoma	PRAD	499	Browse	Browse
Rectum adenocarcinoma	READ	<u>171</u>	Browse	Browse
Sarcoma	SARC	261	Browse	Browse
Skin Cutaneous Melanoma	SKCM	<u>470</u>	Browse	Browse
Stomach adenocarcinoma	STAD	443	Browse	Browse
Stomach and Esophageal carcinoma	STES	<u>628</u>	Browse	Browse
Testicular Germ Cell Tumors	TGCT	150	Browse	Browse
Thyroid carcinoma	THCA	503	Browse	Browse
Thymoma	THYM	124	Browse	Browse
Uterine Corpus Endometrial Carcinoma	UCEC	<u>560</u>	Browse	Browse
Uterine Carcinosarcoma	UCS	57	Browse	Browse
Uveal Melanoma	UVM	<u>80</u>	Browse	Browse

SANFORD BURNHAM PREBYS

Drug information – BRCA dataset – not filtered by the FireBrowse tool!

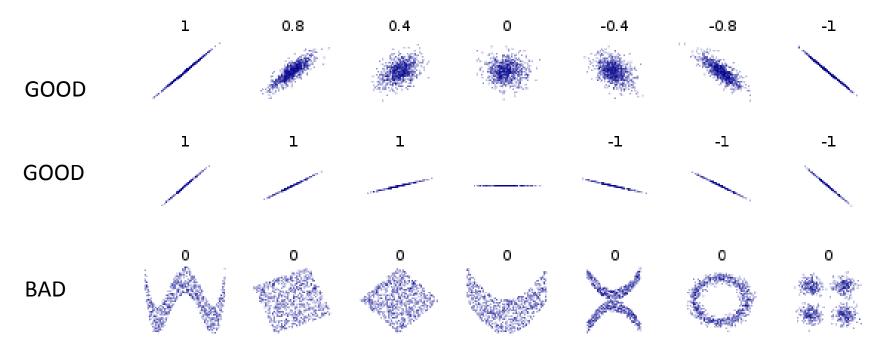

Firebrowser is not context-specific


Evolving beyond Pearson corr. ('the left leg')

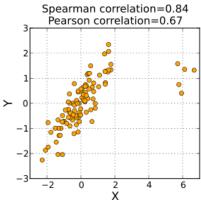
- Pearson correlation $\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$
 - Linear up/down relationships, sensitive to outliers
- Spearman correlation $r_s = \rho_{rg_X, rg_Y} = \frac{cov(rg_X, rg_Y)}{\sigma_{rg_X}\sigma_{rg_Y}}$
 - Up/down relationships, less sensitive to outliers
 - Idea of monotonically increasing/decreasing
- Mutual information

$$I(X;Y) = \sum_{x,y} P_{XY}(x,y) \log rac{P_{XY}(x,y)}{P_X(x)P_Y(y)} = E_{P_{XY}} \log rac{P_{XY}}{P_XP_Y}$$

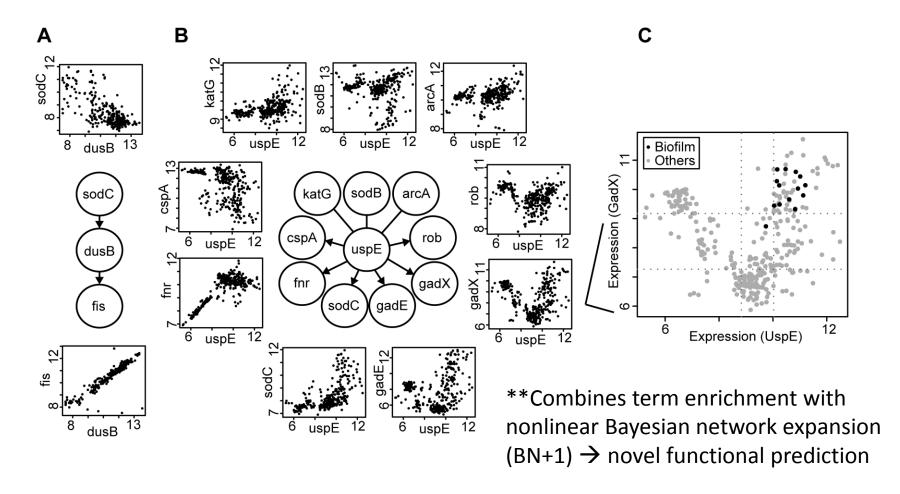
- Deals with linear & nonlinear relationships
- Depends on (joint) probability distributions of data
- Pairwise MI (e.g. in AracNe) almost always used for inference
- Bayesian network/belief-based model
 - Joint probabilities: e.g. P(A) = P(A|B)*P(B)
 - Similar to pairwise MI, but multiple controllers possible
 - More complicated: lots of ways to draw putative network



2 X -1



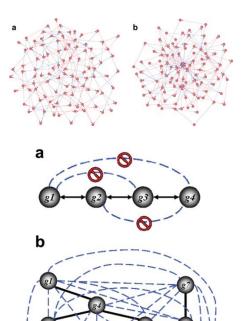
When Pearson/Spearman metrics work & when they fail:

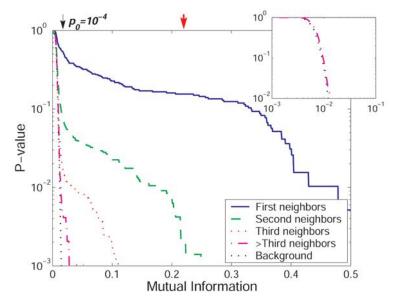


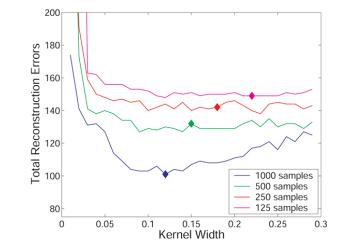
- 1. Don't use Pearson correlations!
- 2. Stratify/select data based on PCA/clustering/etc.
- 3. Maintain sufficient # of samples

SANFORD BURNHAM PREBYS

BN/MI approaches identify nonlinear interactions and driver genes totally missed by Pearson/Spearman!




Hodges et al. 2010. Bayesian network expansion identifies new ROS and biofilm regulators. PLoS ONE. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009513



AraCNe MI

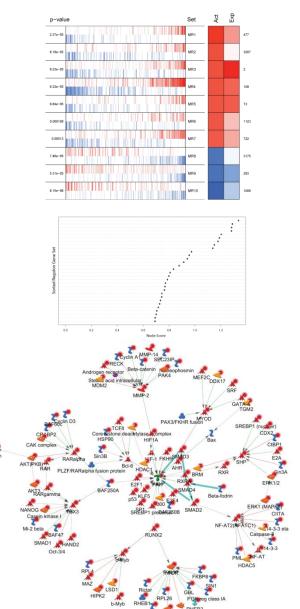
- Andrea Califano (Columbia U.)
- Mutual information
 - MI = 0 \rightarrow no information, poor edge/int.
 - MI = 1 \rightarrow ~perfect correlation, excellent edge/int.
- P-val approaches Inf. as MI \rightarrow 1
 - P-value used in filtering interactions.
 - Filtering needed for N^2-N possible pairwise interactions!

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810318/

Viper

Viper:

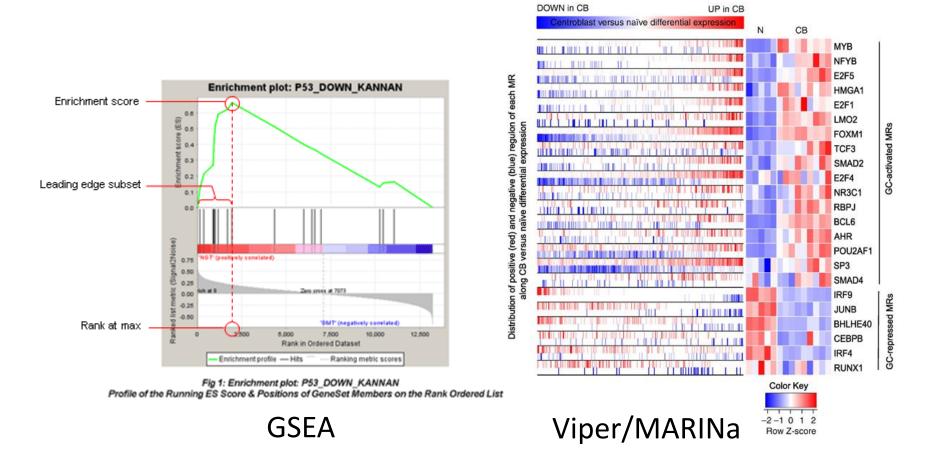
- Identifies driver variables from a biological dataset
- Input: Your data or publicly-available
 - Transcriptomics, Proteomics, Metabolomics, Drug Assay, etc.
 - Matrix-style format (tab-delimited, row & column identifiers)
- Output: novel biological hypotheses
 - Master regulators
 - Implicated 'regulatory module' members
- Requires two phenotypic groups
 - (e.g. cancer vs normal samples)
 - Can slice data from TCGA, CCLE, published drug assays, etc.
- Recommended minimum 10 samples/group
 - Possible to do ~3 samples, but likely no discriminatory power


Viper Pipeline Overview:

- 1. Data acquisition & preprocessing
- 2. Prediction of interactions (AracNe)
- 3. Compute gene signatures (paired T test)
- 4. Generate regulons (Viper)
- 5. Prioritize master regulators (random forest/KNN)
- 6. Validation/support (Metacore, NextBio, other provenance)
- Advanced visualization & reporting (Regulattice, Metacore, Cytoscape, D3.js, etc.)

Optional:

Protein expression prediction (viper) PEx signature matching to samples (Sample Surfer)



"Suggestions"

- 1. Let your data guide the hypothesis.
 - 1. 2-group comparison for Viper
 - 2. Regression recommended for >2 groups
- 2. Small & homogenous datasets are often detrimental to biological inference.
 - 1. Variability = helpful for machine learning
 - 2. Recommended min. 5-10 samples per phenotypic group

Like GSEA, but repeated for every candidate MR (e.g. all genes)

Part 3 - Examples

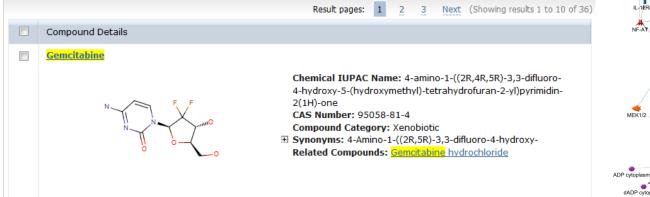
Comparisons (so far):

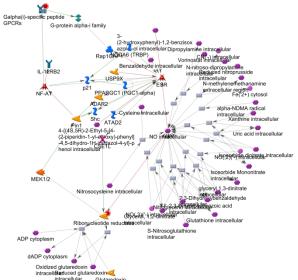
- Pancreatic cancer
 - RNAseq analysis
 - RSEM processed (*different!)
 - Comparison of responders vs progressive disease
 - Both were treated with gemcitabine
- Lung cancer
 - Microarray & RNAseq
 - Comparing early vs late stage

- Breast cancer analysis
 - **chip details
 - RNAseq analysis
 - RPKM processed (standard format)
 - Comparison of 2 drugs & patient responses
 - Tamoxifen
 - Cytoxan
- Glioblastoma (Petrus/Vuori lab)
- Skeletal muscle (TRI)
 - Good vs poor ATP utilizers
 - Caloric restriction study
 - 5-drug analysis

Typical scenario:

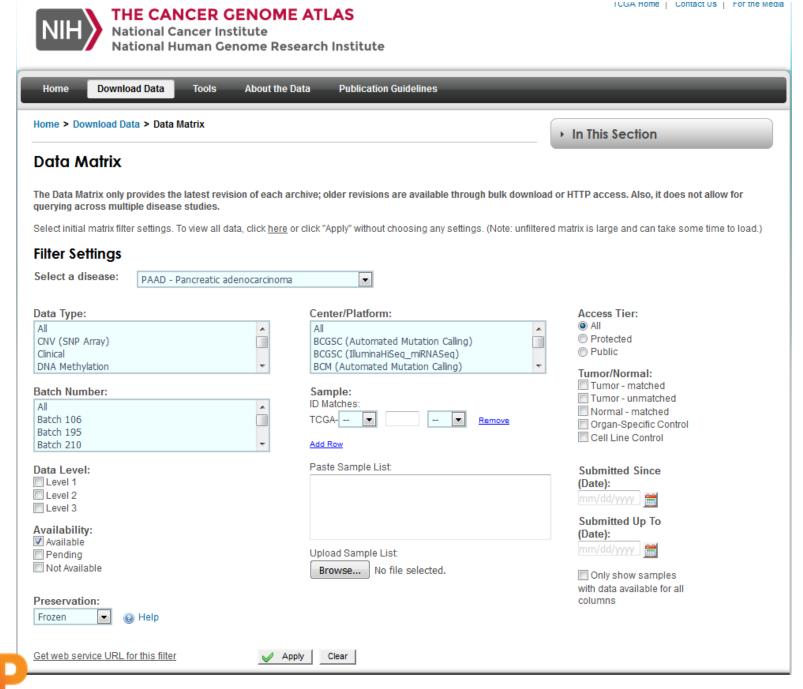
- 1. Pre-treat/normalize/batch correct/log transform as needed
- 2. Filter genes based on coefficient of variation, low abundance
- 3. Fold-change filtering & ANOVA
- 4. Run AracNe mutual information on the data
 - Compute interactome/set of possible molecular interactions
- 5. Run Viper (including student's T test for signature)
- 6. Assess results
 - Filter regulons based on NES, p-value, &/- FDR
 - Check enrichment of Master Regulators
 - Check regulon behavior


Pancreatic cancer analysis


Method:

- 183 Illumina Hiseq V2 samples from TCGA
- RSEM processed (non-RPKM)
- Used normalized version of gene data
- Selected all samples of patients treated with gemcitabine
- Compare responders and non-responders in Viper:
 - "Complete response" (16) vs "Clinical progressive disease" (20)
 - **another group, partial responders, show distinct differences vs both

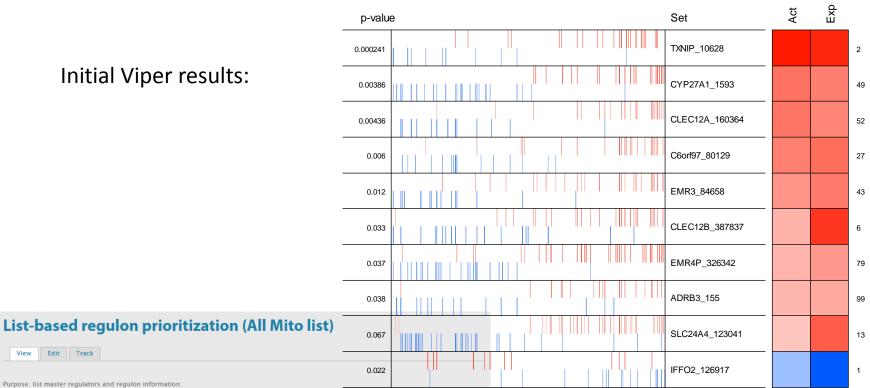
Description	An anticancer drug that belongs to the family of drugs called antimetabolites.
Drug Status	Clinical trial, FDA approved, Clinical trial - Phase II
IUPAC Name	4-amino-1-((2R,4R,5R)-3,3-difluoro-4-hydroxy-5-(hydroxymethyl)-tetrahydrofuran-2-yl)pyrimidin-2(1H)-one
Chemical Formula	C9H11F2N3O4
SMILES	Nc1ccn([C@@H]2O[C@H](CO)[C@@H](O)C2(F)F)c(=O)n1 r
InChI	InChI=1S/C9H11F2N3O4/c10-9(11)6(16)4(3-15)18-7(9)1 4-2-1-5(12)13-8(14)17/h1-2,4,6-7,15-16H,3H2,(H2,12,13,17)/t4-,6-,7-/m1/s1
Category	Xenobiotic
Melting Point	168.64°C
Molecular Weight	263.2


Target: RRM2B *Anti-neoplastic drug*

MetaCore compound/structure search http://portal.genego.com

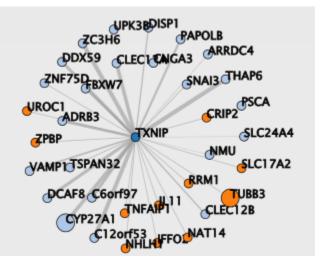
▼ Indications

#	Regimen +	Disease	Drug	Drug Status	Dosage	
1	Single Agent	Carcinoma, Non-Small-Cell	Gemcitabine	Clinical trial		4
2	Single Agent	Sarcoma	Gemcitabine	Clinical trial - Phase II		
3	Single Agent	Colorectal Neoplasms	Gemcitabine	Clinical trial - Phase II		
4	Single Agent	Endometrial Neoplasms	Gemcitabine	Clinical trial - Phase II		
5	Single Agent	Stomach Neoplasms	Gemcitabine	Clinical trial - Phase II	800 mg/m2, 1 times/week	
6	Single Agent	Neoplasms	Gemcitabine	Clinical trial	2, 5, 10 mg, 1 times/14 days	
7	Single Agent	Cholangiocarcinoma	Gemcitabine	Clinical trial - Phase II	1000 mg/m2	
8	Single Agent	Pancreatic Neoplasms	Gemcitabine	FDA approved	1000 mg/m2	
9	Combination	Pancreatic Neoplasms	Gemcitabine	Clinical trial - Phase II		
			Virulizin			
10	Combination	Carcinoma, Non-Small-Cell	Gemcitabine	Clinical trial - Phase II		
			Paclitaxel			
11	Combination	Carcinoma, Transitional Cell	Gemcitabine	Clinical trial - Phase II		
			Lonafarnib			
12	Combination	Carcinoma, Hepatocellular	Gemcitabine	Clinical trial - Phase II		
			Lonafarnib			
13	Combination	Carcinoma, Transitional Cell	Cisplatin	Clinical trial - Phase III		
			Gemcitabine			
14	Combination	Pancreatic Neoplasms	Gemcitabine	Clinical trial - Phase I		
			<u>Ipilimumab</u>			
15	Combination	Pancreatic Neoplasms	Gemcitabine	Clinical trial - Phase II	1000 mg/m2	
			Infliximab		5 mg/kg	
16	Combination	Cachexia	Gemcitabine	Clinical trial - Phase II	1000 mg/m2	
			Infliximab		5 mg/kg	
17	Combination	Urinary Bladder Neoplasms	Everolimus	Clinical trial - Phase I/II	5 mg	
_			Gemcitabine		2000 mg, 2 times/week	

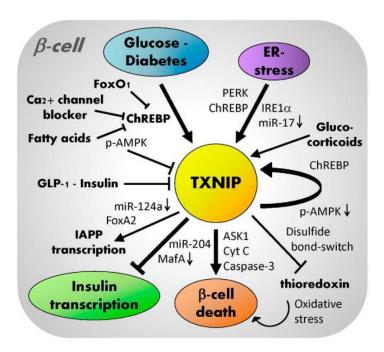

SANFORD BURNHAM PREBYS

https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter

Drug & phenotype information


RNAseq data (lvl3, RSEM)

Data M	atrix Datas	ets																									
	atrix only provides g across multiple d			t rev udie		of e	ach a	rchiv	/e; o	lder	revis	ions	are a	vaila	ible t	hrou	gh b	ulk d	ownl	oad d	or	TP access. Also, it does not allow				not allow	
	Data Matrix (ptior	ns:	R	eset M	latrix	7	Ec	lit Filt	er	×	Rem	ove Fil	ter								⊚ ⊦					🔞 Help
Preservati	on: Frozen																										
Color Cells	s By: Availability								•]	Scro	ll Siz	e: St	andar	rd								•				
							1																				
Legend:	Build Archive		Clinical		Methyl			CNV (SNP Array)				Somatic	Mutations			miRNASeq		Exp-Protein		Fragment Analysis	RNASeqV2			Protected	Mutations		
A Availab P Pendin N Not Av Not Ap *Protected da	ig ailable oplicable	XML	Biotab		JHU-USC HumanMethylation450			Genome_Wide_SNP_6		BI Mutation Calling	BI Automated Mutation Calling	BI Curated Mutation Calling	UCSC Automated Mutation Calling	BCGSC Automated Mutation Calling	BCM Automated Mutation Calling	BCGSC IlluminaHiSeq_miRNASeq		MDA_RPPA_Core		NCH microsat_i	UNC IlluminaHiSeq_RNASeqV2	BI Mutation Calling	BI Automated Mutation Calling	BI Curated Mutation Calling	UCSC Automated Mutation Calling	BCGSC Automated Mutation Calling	BCM Automated Mutation Calling
Batch/Sample	Level			1	2	3	1*	2*	3	2	2	2	2	2	2	3	1	2	3	1*	3	2*	2*	2*	2*	2*	2*
Batch 106	TCGA-FZ-5919-01	Α	А	Α	Α	А	Α	Α	Α	Α	Α		Α				Α	Α	Α	Α		Α	А		А		
	TCGA-FZ-5920-01	А	А	А	Α	А	А	А	А	А	А		А				Α	А	А	Α		Α	А		А		
	TCGA-FZ-5921-01	Α	А				Α	А	Α	А	Α		А				Α	А	А	А		Α	А		А		
	TCGA-FZ-5922-01	А	А	Α	Α	А	Α	А	А	А	Α		А				Α	А	А			Α	А		А		
	TCGA-FZ-5923-01	А	А	А	А	А	А	А	А	А	А		А				А	А	А	А		А	А		А		
	TCGA-FZ-5924-01	Α	А	А	А	А	Α	А	А	А	А		А				Α	А	А	Α		Α	А		А		
	TCGA-FZ-5926-01	Α	А	Α	А	А	А	А	А	А	A		Α				Α	А	Α			Α	А		А		
	TCGA-FZ-5919-11	А	А	A	Α	А	А	А	A	Α	A		А									Α	А		Α		


Toggle table view Curated human mitchondrial proteins from MitoCarta 2.0 (including synonyms):

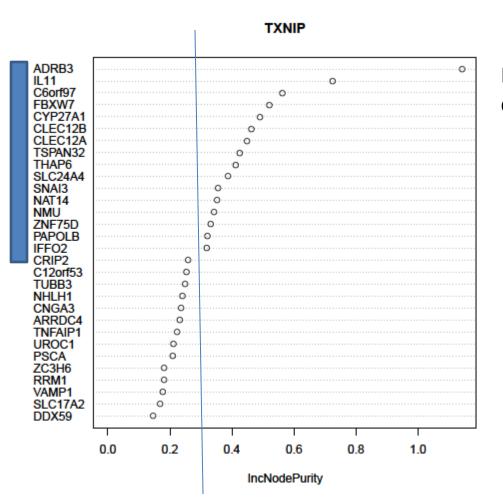
#	Probe	Master Regulator Gene	Regulatory Module Genes	Matched Genes	# Matched Genes	Total # in Regulon (inc. MR)	% Match
1	TXNIP_10628	TXNIP [Int.s]	ADRB3 ARRDC4 C12orf53 C6orf97 CLEC12A CLEC12B CNGA3 CRIP2 <mark>CYP27A1</mark> DCAF8 DDX59 DISP1 FBXW7 IFF02 IL11 NAT14 NHLH1 NMU PAPOLB PSCA RRM1 SLC17A2 SLC24A4 SNAI3 THAP6 TNFAIP1 TSPAN32 <mark>TUBB3</mark> UPK3B UROC1 VAMP1 ZC3H6 ZNF75D ZPBP	CYP27A1 TUBB3	2	35	5.71
2	CYP27A1_1593	CYP27A1 [Int.s]	ACTBL2 ACTL6A ACYP1 ADRB3 C12orf53 C13orf29 C6orf201 C6orf97 CEP55 CLEC12A CLEC12B CNFN DCAF8 DISP1 EMR3 EMR4P FKB95 GPC5 IFF02 IG510 IL11 MB0AT2 NAA50 NAIP NAT14 NBPF14 NCRNA00081 NCRNA00152 NUDT15 PDCD10 PODXL RAB11FIP5 RM1 RTN3 SEMA7A SLC17A2 SLC24A4 SNAI3 TAF1B TNNI3K TSPAN32 TXNIP UROC1 VAMP1 ZNF540 ZPBP	RAB11FIP5	2	47	4.26
3	CLEC12A_160364	CLEC12A [Int.s]	ACYP1 ADRB3 C12orf53 C6orf218 C6orf97 CLEC12B CNFN CRIP2 CYP27A1 DDX59 ELANE EMR3 EMR4P FKBP5 GFRA2 ICSF10 LOC100272216 MDFI NAIP NAT14 NUDT15 OVCH1 PKD1L3 RAB11FIP5 RABEP1 RRM1 RTN3 SLC17A2 SLC22A13 SLC24A4 SNAI3 TSPAN32 TXNIP UROC1	CYP27A1 RAB11FIP5	2	35	5.71
	5B	int.s]	ACTG1 ACYP1 ADRB3 C120rf53 C60rf218 CLEC12A CLEC12B CNFN CRIP2 C5TF2T CYP27A1 DCAF8 EMR3 EMR4P CFRA2 GPR17 KRT17 KRT80 NAIP NAT14 NBPF14 NCRNA00152 NRM OVCH1 PKD1L3 PMEPA1 RTN3 RYR2 SLC17A2 SLC24A4 SMEK1 SNAI3 TFAP2A THAP6 TSPAN32 TXNIP UROC1 ZC3H6	CYP27A1	1	39	2.56

Pancreatic Cancer Top result: tumor suppressor perturbed in pancreatic cancer!

significantMRs	Tfmode(MR)	# genes in regulon	NES	p.value	FDR
TXNIP_10628	1.8265	34	3.67	0.000241	0.033
CYP27A1_1593	0.773951	46	2.89	0.00386	0.199
CLEC12A_1603 64	-0.415	34	2.85	0.00436	0.199
C6orf97_80129	-0.08728	38	2.75	0.006	0.206
EMR3_84658	-1.08802	39	2.51	0.012	0.329
IFFO2_126917	0.952298	31	-2.29	0.022	0.469
CLEC12B_3878 37	-1.23522	48	2.13	0.033	0.469
EMR4P_32634 2	-0.74868	59	2.09	0.037	0.469
ADRB3_155	-1.04984	34	2.07	0.038	0.469

http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4116588/figure/F2/

Rank	Master Regulator	Name	Chr	Biological Role(s)
1	TXNIP	Thioredoxin interacting protein	1q2 1.2	Inhibits antioxidative function of thioredoxin; regulates cellular metabolism and ER stress; tumor suppressor
2	CYP27A1	Cytochrome P450 family 27 subfamily A member 1	2q3 5	Monooxygenase, catalyzing reactions in drug metabolism, cholesterol/steroid/lipid synthesis, mitochondrial protein
3	CLEC12A	C-type lectin domain family 12 member A	12p 13.2	Negative regulator of granulocyte and monocyte function
4	C6orf97	Coiled-coil domain containing 170	6q2 5.1	<pre>**susceptibility locus in breast cancer (GWAS implicated)</pre>
5	EMR3 (ADGRE3)	Adhesion G protein- coupled receptor E3	19p 13.1	TM7 transmemberane protein; granulocyte marker; mediator: invasive variation in glioblastoma
6	IFFO2	Intermediate filament family orphan 2	1p3 6.13	Allergic diseases
7	CLEC12B	C-type lectin domain family 12 member B	12p 13.2	Inhibitory receptor on myeloid cells
8	EMR4P (ADGRE4P)	Adhesion G protein- coupled receptor E4, pseudogene	19p 13.3	Encoded protein not yet detected, thought to be soluble vs surface exprs'd
9	ADRB3	Adrenoceptor beta 3	8p1 1.23	Regulation of lipolysis and thermogenesis; mediates catecholamine-induced activation of adenylate cyclase via G proteins
BF				


SANFORD BURNHAM PREBYS

Implications of parameter selection: sample size, p-val filtering, data heterogeneity,

ANOVA p-value (feature filter)	0.05	0.05	0.05	0.01	0.01	0.01
AracNe p-value (interaction filter)	1E-2	1E-5	1E-7	1E-2	1E-5	1E-7
NES p-value (regulon filter)	0.05	0.05	0.05	0.05	0.05	0.05
<pre># Interactions</pre>	915,585	190,330	66,770	4,932	810	210
# Regulons @ p<.05 cutoff (viper)	64	47	17	9	0	0
Median # features/regulon	532	92	59	38	0	0
SBP NFORD BURNHAM PREBYS	"Too loose"	"Sw	eet spot"	Knowledge- matched		tringent"

Random Forest – impute most important regulon members for TXNIP

- VarImpPlot also used in MetaboAnalyst
- Random forest imputation per regulon

Right: important driver candidates

Left: less supported regulon members

Regulattice
HOME DATA VIEWS ABOUT US
Home / Views / Regulon Overview
Regulon Overview
View Edit Track
Purpose: list master regulators and regulon information:

Probe	Master Regulator Gene	Regulatory Module Genes
TXNIP_10628	TXNIP	ADRB3 ARRDC4 C12orf53 C6orf97 CLEC12A CLEC12B CNGA3 CRIP2 CYP27A1 DCAF8 DDX59 DISP1 FBXW7 IFFO2 IL11 NAT14 NHLH1 NMU PAPOLB PSCA RRM1 SLC17A2 SLC24A4 SNAI3 THAP6 TNFAIP1 TSPAN32 TUBB3 UPK3B UROC1 VAMP1 ZC3H6 ZNF75D ZPBP
CYP27A1_1593	CYP27A1	ACTBL2 ACTL6A ACYP1 ADRB3 C12orf53 C13orf29 C6orf201 C6orf97 CEP55 CLEC12A CLEC12B CNFN DCAF8 DISP1 EMR3 EMR4P FKBP5 GPC5 IFFO2 IGSF10 IL11 MBOAT2 NAA50 NAIP NAT14 NBPF14 NCRNA00081 NCRNA00152 NUDT15 PDCD10 PODXL RAB11FIP5 RRM1 RTN3 SEMA7A SLC17A2 SLC24A4 SNAI3 TAF1B TNNI3K TSPAN32 TXNIP UROC1 VAMP1 ZNF540 ZPBP
CLEC12A_160364	CLEC12A	ACYP1 ADRB3 C12orf53 C6orf218 C6orf97 CLEC12B CNFN CRIP2 CYP27A1 DDX59 ELANE EMR3 EMR4P FKBP5 GFRA2 IGSF10 LOC100272216 MDFI NAIP NAT14 NUDT15 OVCH1 PKD1L3 RAB11FIP5 RABEP1 RRM1 RTN3 SLC17A2 SLC22A13 SLC24A4 SNAI3 TSPAN32 TXNIP UROC1

http://regulattice.burnham.org

http://regulattice.sbpdiscovery.org (external)

Both require login/account access

List-based regulon prioritization (All Mito list)

View Edit Track

Purpose: list master regulators and regulon information:

Toggle table view

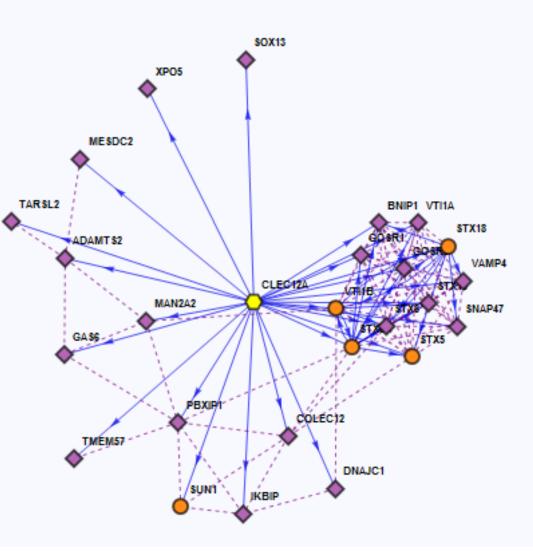
Curated human mitchondrial proteins from MitoCarta 2.0 (including synonyms):

#	Probe	Master Regulator Gene	Regulatory Module Genes	Matched Genes	# Matched Genes	Total # in Regulon (inc. MR)	% Match
1	TXNIP_10628	TXNIP [int.s]	ADRB3 ARRDC4 C12orf53 C6orf97 CLEC12A CLEC12B CNGA3 CRIP2 CYP27A1 DCAF8 DDX59 DISP1 FBXW7 IFFO2 IL11 NAT14 NHLH1 NMU PAPOLB PSCA RRM1 SLC17A2 SLC24A4 SNAI3 THAP6 TNFAIP1 TSPAN32 TUBB3 UPK3B UROC1 VAMP1 ZC3H6 ZNF75D ZPBP	CYP27A1 TUBB3	2	35	5.71
2	CYP27A1_1593	CYP27A1 [lnt.s]	ACTBL2 ACTL6A ACYP1 ADRB3 C12orf53 C13orf29 C6orf201 C6orf97 CEP55 CLEC12A CLEC12B CNFN DCAF8 DISP1 EMR3 EMR4P FKBP5 GPC5 IFFO2 IGSF10 IL11 MBOAT2 NAA50 NAIP NAT14 NBPF14 NCRNA00081 NCRNA00152 NUDT15 PDCD10 PODXL RAB11FIP5 RRM1 RTN3 SEMA7A SLC17A2 SLC24A4 SNAI3 TAF1B TNNI3K TSPAN32 TXNIP UROC1 VAMP1 ZNF540 ZPBP	RAB11FIP5	2	47	4.26
3	CLEC12A_160364	CLEC12A [lnt.s]	ACYP1 ADRB3 C12orf53 C6orf218 C6orf97 CLEC12B CNFN CRIP2 CYP27A1 DDX59 ELANE EMR3 EMR4P FKBP5 GFRA2 IGSF10 LOC100272216 MDFI NAIP NAT14 NUDT15 OVCH1 PKD1L3 RAB11FIP5 RABEP1 RRM1 RTN3 SLC17A2 SLC22A13 SLC24A4 SNAI3 TSPAN32 TXNIP UROC1	CYP27A1 RAB11FIP5	2	35	5.71
4	C6orf97_80129	C6orf97 [Int.s]	ACTG1 ACYP1 ADRB3 C12orf53 C6orf218 CLEC12A CLEC12B CNFN CRIP2 CSTF2T CYP27A1 DCAF8 EMR3 EMR4P GFRA2 GPR17 KRT17 KRT80 NAIP NAT14 NBPF14 NCRNA00152 NRM OVCH1 PKD1L3 PMEPA1 RTN3 RYR2 SLC17A2 SLC24A4 SMEK1 SNAI3 TFAP2A THAP6 TSPAN32 TXNIP UROC1 ZC3H6	CYP27A1	1	39	2.56

SANFORD BURNHAM PREBYS

Master Regulator Enrichment in MetaCore Viper with no ANOVA, AracNe p-value 1e-7

े 🔶 ।	Export	Export to image									Total resul	ts: 10 •
	#	Diseases	0	2	4	6	8	10	-log(pValue)	pValue +	FDR	Rat
	1	Breast Neoplasms								3.553e-13	2.071e-10	222/914
	2	Breast Diseases	_						-	3.599e-13	2.071e-10	222/914
	3	Pancreatic Neoplasms								7.894e-13	2.680e-10	93/263
	4	Pancreatic Diseases							-	9.313e-13	2.680e-10	105/316
	5	Endocrine Gland Neoplasms								6.057e-12	1.394e-9	140/493
	6	Skin and Connective Tissue Diseases								4.266e-11	6.358e-9	267/1226
	7	Carcinoma, Ductal								4.885e-11	6.358e-9	63/156
	8	Carcinoma, Squamous Cell								4.951e-11	6.358e-9	34/54
	9	Neoplasms, Ductal, Lobular, and Medullary								4.971e-11	6.358e-9	64/160
	10	Skin Diseases								1.394e-10	1.558e-8	256/1168



Subgraph for CLEC12A

✓ Literature → 22

Graph Legend

Bioplex interaction browser:

http://wren.hms.harvard.edu/bioplex/browseInteractions.php

Summary

- Recommended multiple tools/resources for transcriptomics, proteomics and metabolomics analyses
- Showed information-based metrics (MI/BN) are more descriptive than Spearman/Pearson in complex datasets
- Presented viper analysis, one of several approaches to predict drivers/controllers guiding phenotype changes
- Applied Viper to understanding why pancreatic cancer progresses despite gemcitabine treatment
- Repeat the procedure for other phenotypes/cancers/samples?
 - Need your feedback/requests here!

Acknowledgements

- Bioinformatics Core
 - Alexey Eroshkin
 - Vicky Guo
 - Stacy Huang
 - Craig Hauser
- Godzik Laboratory
 - Adam Godzik
 - Kai Post**
 - Andrew Leblanc**
 - Eduard Porto
 - Thomas Hrabe

- Powis Laboratory*
 - Garth Powis
 - Petrus De Jong
 - Claudia Miller
- Vuori Laboratory*
 - Kristiina Vuori
 - Darren (Ben) Finlay

Florida Hospital & Sanford • Burnham • Prebys

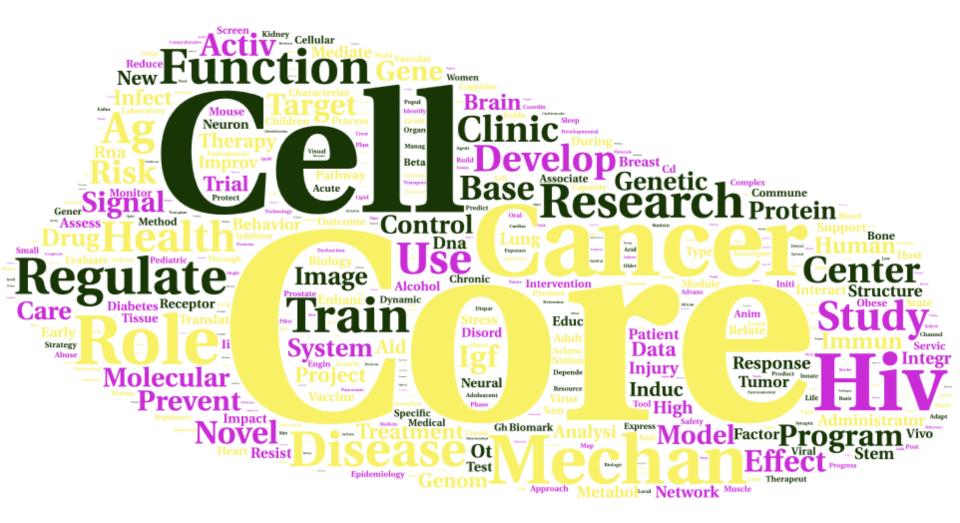
- Stephen Smith
- Lauren Sparks
- Stephanie Parsons

Cancer Center Support

NIH

NATIONAL CANCER

INSTITUTE


TRANSLATIONAL RESEARCH INSTITUTE

Florida Hospital & Sanford • Burnham • Prebys


Appendix

NIH Projects funded in 2015: Wordcloud based on titles

All NIH projects (2015)

NCI projects (2015)

TCGA major variables – clinical info (available in the Biotab annotation set)

- bcr_patient_uuid patient id: max = 23, min = 1 match vs microarray
- bcr_patient_barcode shortened form of patient id (TCGA id)
- bcr_drug_uuid extended barcode (like *_patient_uuid)
- bcr_drug_bacrcode drug barcode (also TCGA- id)
- form_completion_date
- pharmaceutical_therapy_drug_name* common drug name
- clinical_trial_drug_classification most n/a or not available
- pharmaceutical_therapy_type most are chemo, followed by hormone or immunotherapy, etc.
- Pharmaceutical_tx_started_days_to

•

Bioplex interaction browser:

http://wren.hms.harvard.edu/bioplex/browseInteractions.php

• Only 1 direct protein interaction identified for TXNIP (AP-MS)

BioPlex Network Plotter Version 2594. This has 2594 nonredundant AP-MS Experiments.
Subgraph for TXNIP ✓ Literature → 0 Graph Legend
> TXNIP IL12RB1
> Interactor
> Interactor: Also a bait
> Edge: from BioPlex Name Description % Det. # Det. # Interactor 293 % bin Full Length?
> Edge: Interactor Pairs
in Multiple Exp.
Node coloring:> User defined
 Opener for GO and Basic Table
Gene Ontology Table Color Verteces By GO # 0 - Make Int Map
No Significant GO terms
Num Gene Name Database ID Protein Description Max PSM Tot PSM Found in % VDegree GO Legend 1 ILIZERI 2 sp [942701-3] I12R1_HUMAN Isoform 3 of Interleukin-12 receptor subunit beta-1 22 103 35 1.3 15 2 TXNIP sp [Q9H3M7] TXNIP_HUMAN Thioredoxin-interacting protein 2 7 6 0.2 1

MetaCore enrichment of Master Regulators (2 cutoffs for p-values)

tabolic Networks

Export	Export to image							Total results	: 10 -
#	Networks	0	0.25 0.5 0.75 1	1.25 1	.5 1.75	-log(pValue)	pValue 🕈	FDR	Ratio
1	Lyso-Phosphatidylserine pathway						5.551e-3	6.046e-2	2/81
2	Phosphatidylinositol-4,5-diphosphate pathway						7.113e-3	6.046e-2	2/92
3	Vitamin, mediator and cofactor metabolism Vitamin D3						6.121e-2	2.133e-1	1/44
4	Steroid metabolism Cholesterol metabolism						1.036e-1	2.133e-1	1/76
5	GalNAcbeta1-3Gal pathway						1.216e-1	2.133e-1	1/90
6	Sphingomyelin pathway						1.292e-1	2.133e-1	1/96
7	N-acyl-sphingosine phosphate pathway						1.330e-1	2.133e-1	1/99
8	Acetyl-L-carnitine pathway						1.343e-1	2.133e-1	1/100
9	Lipid metabolism Triacylqlycerol metabolism						1.355e-1	2.133e-1	1/101
10	Glutamic acid pathway						1.380e-1	2.133e-1	1/103

back to to

Processes

Export	Export to image								Total resul	ts: <u>10</u> •
#	Processes	0	0.5 1	1.5 2	2.5 3	3.5 4	-log(pValue)	pValue 🕈	FDR	Rati
1	fast, calcium ion-dependent exocytosis of neurotransmitter							6.413e-6	9.741e-3	2/
2	detection of calcium ion							7.038e-6	9.741e-3	3/1
3	negative regulation of SREBP signaling pathway							1.921e-5	1.329e-2	2/
4	regulation of SREBP signaling pathway							1.921e-5	1.329e-2	2/
5	regulation of cell migration involved in sprouting angiogenesis				_			3.080e-5	1.705e-2	3/2
6	negative regulation of triglyceride biosynthetic process	-						3.835e-5	1.736e-2	2/
7	regulation of sprouting angiogenesis							4.950e-5	1.736e-2	3/2
8	regulation of potassium ion transmembrane transport	-						5.501e-5	1.736e-2	4/8
9	dicarboxylic acid transport	-		_				6.053e-5	1.736e-2	4/8
-	of oxidative stress-induced neuron intrinsic apoptotic signaling pathway							6.381e-5	1.736e-2	2/

SANFORD BURNHAM PREBYS

▼ Dise	▼ Diseases (by Biomarkers)						
_ → !	Export Seport to image		Total results:	10 -			
	# Diseases	0 0.5 1 1.5 2 2.5 3 3.5 -log(pValue) pValue +	FDR	Ratio			
	1 Neoplasms, Complex and Mixed	2.991e-5	2.778e-2	7/347			
	2 Thymoma	3.856e-4	1.134e-1	3/55			
	3 Thymus Neoplasms	6.888e-4	1.134e-1	3/67			
	4 Cholangiocarcinoma	7.529e-4	1.134e-1	4/159			
	5 <u>Thromboembolism</u>	9.568e-4	1.134e-1	3/75			
	6 Dysplastic Nevus Syndrome	1.080e-3	1.134e-1	2/19			
	7 Nervous System Diseases	1.122e-3	1.134e-1	26/5717			
	8 Bronchitis	1.196e-3	1.134e-1	3/81			
	9 Atrial Fibrillation	1.239e-3	1.134e-1	3/82			
	10 Beckwith-Wiedemann Syndrome	1.452e-3	1.134e-1	2/22			

back to top

▼ Toxicity Networks

-	Export	Export to image						Total results:	10 -
	#	Networks	0 0.25	0.5 0.75 1	1.25 1.5 1.	.75 -log(pValue)	pValue 🕈	FDR	Ratio
	1	Chemotaxis NF-kB regulation			_		8.055e-3	2.426e-1	2/43
	2	Transport Vesicle-mediated transport membrane biogenesis					1.732e-2	2.426e-1	2/64
	3	Protein folding ATFs regulation					2.052e-2	2.426e-1	2/70
	4	Cell cycle APC regulation of G1 S					2.762e-2	2.426e-1	2/82
	5	Protein folding Calcineurin, FKBPs					5.373e-2	2.426e-1	1/17
	6	Protein folding p53 regulation					6.902e-2	2.426e-1	1/22
	7	Cell cycle G1 S transition of mitotic cell cycle					9.005e-2	2.426e-1	1/29
	8	Blood coagulation Fibrinogen signaling					9.597e-2	2.426e-1	1/31
	9	Signal transduction Neuropeptide signaling pathway Substance P, GRP, Neuromedulin B,					1.048e-1	2.426e-1	1/34
		<u>Neuropeptide FF, Urotensin-2</u>							
	10	Inflammation Kallikrein signaling					1.106e-1	2.426e-1	1/36

▼ Pa	▼ Pathway Maps												
4	Expor	t 🔍 Export to image										Total results:	10 -
	#	Maps	0	0	.3 0.0	5 0.9) 1.2	2 1.5	1.8 2.1	-log(pValue)	pValue 🕈	FDR	Ratio
	1	NETosis in SLE									2.080e-3	1.504e-1	2/31
	2	Development Positive regulation of STK3/4 (Hippo) pathway and negative regulation of YAP/TAZ function	-								1.025e-2	1.504e-1	2/70
	3	HBV regulation of DNA repair and apoptosis leading to HCC	_								3.045e-2	1.504e-1	1/14
	4	Involvement of VEGF signaling in the progression of lung cancer	_								3.686e-2	1.504e-1	1/17
	5	Development Role of proteases in hematopoietic stem cell mobilization									3.899e-2	1.504e-1	1/18
	6	Development WNT signaling pathway. Part 1. Degradation of beta-catenin in the absence WNT signaling	-					I			4.111e-2	1.504e-1	1/19
	7	Ethanol/Acetaldehyde-dependent stimulation of MMP-9 expression in HCC	_								4.111e-2	1.504e-1	1/19
	8	PR action in breast cancer: stimulation of metastasis	_								4.323e-2	1.504e-1	1/20
	9	Development Role of G-CSF in hematopoietic stem cell mobilization	_								4.534e-2	1.504e-1	1/21
	10	Role of ZNF202 in regulation of expression of genes involved in atherosclerosis									4.534e-2	1.504e-1	1/21
			1										

back to top

Process Networks

> !	Export	t 🔄 Export to image						Total results:	10 -
	#	Networks	0 0.3 0.6	0.9 1.2 1	.5 1.8 2.1	-log(pValue)	pValue +	FDR	Ratio
	1	Transport Synaptic vesicle exocytosis					2.143e-3	1.007e-1	4/175
	2	Development Neurogenesis Synaptogenesis					1.925e-2	2.840e-1	3/180
	3	Cell adhesion Synaptic contact					2.040e-2	2.840e-1	<mark>3/</mark> 184
	4	Cell adhesion Cell-matrix interactions					2.914e-2	2.840e-1	3/211
	5	Reproduction Progesterone signaling					3.022e-2	2.840e-1	3/214
	6	Proteolysis Proteolysis in cell cycle and apoptosis					6.055e-2	3.761e-1	2/125
	7	Signal transduction Androgen receptor nuclear signaling					6.140e-2	3.761e-1	2/126
	8	Chemotaxis					7.112e-2	3.761e-1	2/137
	9	Neurophysiological process GABAergic neurotransmission					7.203e-2	3.761e-1	2/138
	10	Development Neuromuscular junction					8.036e-2	3.777e-1	2/147

MitoCarta Provenance (Known mitochondrial proteins)

10 Below are descriptions for the columns (in tables A,B):

11	TrainingDataset	Tmito, Tnot_mito, or T_possible_mito (indicating evidence based on NCBI GO mitochondrial annotation or MitoP2 database, b
12	HumanGenelD	NCBI Entrez Gene ID for human ortholog of mouse gene (based on reciprocal BLASTP hit, expect<1e-3)
13	MouseOrthologGeneID	NCBI Entrez Gene ID for mouse gene
14	Symbol	Official Entrez gene symbol
15	Synonyms	NCBI Entrez gene synonyms
16	Description	NCBI Entrez gene description
17	EnsemblGenelD	Ensembl Gene Identifier (based on Ensembl mapper)
18	ProteinLength	Length of longest RefSeq protein isoform
19	TargetP_Score	TargetP confidence score (1-5, 1 is most confident) of mitochondrial targeting signal. Score 0 indicates no mitochondrial predi
20	MitoDomain_Score	MitoDomain indicates exclusively mito domain; SharedDomain indicates shared mito & non-mito domain; NonMitoDomain ind
21	CoexpressionGnfN50_Score	N50 score for coexpression across mouse GNFv3 tissue atlas (N50 = number of 50 nearest neighbors that are in Tmito)
22	PGC_Induction_Score	Foldchange in transcript induction following overexpression of PGC1a, known to induce mitochondrial biogenesis
23	YeastMitoHomolog_Score	OrthologMitoHighConf (HomologMitoHighConf) if yeast ortholog (homolog) is annotated mitochondrial in SGD with high confide
24	RickettsiaHomolog_Score	Ortholog if 1:1 ortholog between mouse and Rickettsia prowazekii; Homolog if homology between mouse and Rickettsia prow
25	MSMS_Score	Category indicating MS/MS abundance (coverage) and enrichment in subtractive proteomics (either pure-enriched, crude-enric
26	MitoCarta2_score	Naïve Bayes score (sum of log-likelihood ratios for each of 7 above features)
27	MitoCarta2_FDR	Estimated corrected false discovery rate for all predictions >= given score
28	MitoCarta2_List	1 if gene is on final MitoCarta2.0 list
29	MitoCarta2_Evidence	Type of experimental support
30	hg19_Chromosome	Chromosome (hg19 assembly)
31	hg19_Start	Start position (hg19)
32	hg19_Stop	Stop position (hg19)
33	MSMS_NUM_TISSUES	Number 0-14 tissues where gene products were found by MS/MS
		Number of unique peptides, based on pooling spectra from 14 tissues
35	MSMS_NUM_SPECTRA	Number of spectra corresponding to this gene, based on pooling spectra from 14 tissues
36	MSMS_TOTAL_INTENSITY	total peak intensity, based on pooling spectra from 14 tissues
		Coverage (percent of amino acids covered by MS/MS spectra), based on pooling spectra from 14 tissues
38	Tissues	List of tissues with evidence of protein, based on 14 tissues

From Human.MitoCarta2.0.xls file, 1st tab. 2nd tab is filtered 1158 human genes