NEXTBIO

Making Discoveries Using the NextBio Search Engine

User Guide

January 2009

NextBio User Guide

Contents

Basic Concepts of Overall Search Process	4
Sources of Public Data	5
Cross-platform comparisons	6
Cross-species comparisons	6
Overview of NextBio Content	7
NextBio Indexes, Vocabularies and Ontologies	8
Authoritative Data Sources	9
Biogroup Content	9
NextBio Quality Control Process	10
Assessing Experimental Design	10
Assessing Statistical Significance	10
Essentials of Data Security	12
Essentials of NextBio Enterprise Domain	13
Essentials of Gene Query Processing and Results	14
Gene Query Example, ESR1 - NextBio	15
Essentials of Bioset Query Processing and Results	16
Bioset Query Example, expO Breast cancer: ER negative vs_ER positive - NextBio	18
Venn Diagram and Correlation Table Explanation	19
Rank Score Explanation	19
Essentials of Biogroup Query Processing and Results	21
Biogroup Query Example, angiogenesis - NextBio	22
Essentials of Disease Query Processing and Results	23
Disease Query example, Breast cancer - NextBio	23
Essentials of Tissue and Organ Query Processing and Results	25
Tissue Query Example, Liver - NextBio:	25
Essentials of Treatment Query Processing and Results	27
Treatment Query Example, Tamoxifen - NextBio	27

29
30
31
32
32
33
34
35
35
37
37
39
41
42

Basic Concepts of Overall Search Process

The NextBio search engine is a completely novel web-based platform designed to search and correlate global collections of heterogeneous, large-scale experimental data across diverse platforms, organisms, and therapeutic areas. The NextBio search engine uniquely combines public datasets of information to identify and rank studies and conditions that most highly correlate with a user-defined query. Different queries can consist of genes, proteins, and pathways of interest, as well as an investigator's own experimental results. With the goal of making all data easily accessible to all researchers, even to those scientists without a rigorous background in statistics or bioinformatics, NextBio strictly adheres to principles of simplicity and follows classical web search conventions familiar to the public. Unlike classical web and text search engines, which at their core are based on text matches, the NextBio search engine is based on "correlation matches" – meaning that the most significantly ranked search results depend on the strength of correlations between a user's query and each dataset within all available data. A sound Web 2.0 semantic structure and expansive content enables fast and flexible usability.

Usability

In a highly collaborative environment, NextBio places real experimental data from a range of high throughput platforms and literature resources within the reach of scientists, clinical researchers and scientific managers of all kinds. NextBio enables integrative biology by organizing and presenting results in a way that diminishes the boundaries between scientific domains.

Program Directors

Assemble knowledge to drive program success and utilize study results from diverse scientific disciplines and technology platforms in their quest for more insightful data interpretation. Thereby, gaining a holistic view for better decision making.

Clinical Scientists

Mine the aggregate experimental and clinical data within NextBio to facilitate translational research efforts and elucidate alternative indications for existing compounds.

Research Scientists – Biologists, Chemists, Toxicologists

Query NextBio's repository to validate or generate novel hypotheses prior to investing in new experiments. Correlate results from high-throughput assays to understand treatment effects, validate biomarker activities and identify new targets.

Computational Experts

Explore experimental results and correlate these to a wealth of public and private data within NextBio in order to assist scientists with the biological interpretation of their studies.

Library Scientists

Share a variety of knowledge resources and search expertise across organizations.

The NextBio search engine enables any set of genes or proteins to be searched against all other studies in order to identify significant correlations with other data, providing an easy-to-understand biological context for the otherwise complex data. A researcher can load a set of genes with or without associated statistics into the NextBio search engine and instantly view significant correlations to all other studies. Rank-based enrichment analysis enables quick identification of studies that show very similar positively or negatively associated results from different platforms, data types, and organisms.

The NextBio correlation-based search strategy can be divided into three parts – 1) A "universal" biological dictionary translates information across different data types, platforms, and organisms; 2) a highly standardized pre-processing pipeline for raw experimental data removes the majority of noise and extracts gene subsets significant for a given condition (e.g. all genes that are differentially expressed between control and treated samples); and 3) algorithms that compute the correlation between diverse types of queries and each experimental result. Correlations across all data can be computed for individual genes, sets of genes with ranks indicating their significant association with a given study, or any unranked set of genes with a related biological function (Figure 1). In essence, the biological activity of genes and proteins in each of the thousands of studies is summarized at the level of ranked signatures (e.g. genes differentially expressed between two conditions and ranked by fold change). Pre-computed correlations enable users to explore this space of genes, studies, and functional groups in real time.

Figure 1 – Outline of different types of search options available within the NextBio search engine a) with user defined set of data (e.g. differentially-expressed genes ranked by fold change, subset of significant siRNAs with associated scores from a high-content screen of cellular phenotypes); b) with a simple unranked geneset (genes in a pathway, Gene Ontology groups, set of biomarkers or literature-retrieved genes); and c) with a gene or multiple genes of interest. Vertical bars represent a set and ranks of individual elements (e.g. genes or proteins).

Sources of Public Data

NCBI Gene Expression Omnibus (GEO), Stanford Microarray Database (SMD), and Array Express (AE) are excellent sources of raw microarray and other high-throughput data. The critical distinction between these databases and the NextBio search engine is that the former serve as the repositories of raw data, and not as comprehensive discovery platforms. These repositories do not have a way to allow researchers to postulate questions and to make data correlations based on genes or pathways of interest. For example, the most dynamic result of an NCBI GEO query is to view expression of a single gene across multiple samples within the same study. In the case of a cancer study with hundreds of tumor samples, researchers can see the level of gene expression in each individual sample; however, there is no good way to consider questions that concern i) whether a gene is differentially expressed between certain clinical subsets within that study, ii) what other studies find that gene significantly changing, iii) what other functionally related genes are observed to change with it, and iv) what is the biological context. The NextBio search engine is designed to provide answers to these and other complex questions. Multi-gene expression signatures from one study are automatically compared to all other signatures in the repository to assist researchers to discover, connect, and make sense of related biology and underlying mechanisms.

Cross-platform Comparisons

To compare microarray data from different platforms in the NextBio search engine, an index of microarray platforms was compiled. The index enables recognition of commonly used public gene identifiers as well as specific vendor identifiers, and provides a standardized mapping of individual identifiers from over 25 sources of reference identifiers such as NCBI Entrez Gene, UniGene, Ensembl, RefSeq, or GenBank accession numbers. The conversion of platform-specific identifiers into reference identifiers allows gene comparison across different platforms. Different studies from different platforms also exhibit variable expression profiles and statistics with different dynamic ranges, distributions of fold-changes, and p-values that reflect the technologies used. To allow inter-study comparability, a non-parametric approach was established so that, for each study, ranks are assigned to each feature based on a selected statistical data type, such as fold-change, p-value, and log ratio (Shi et al. 2004). Ranks are then further normalized to eliminate any bias due to various platform sizes.

Cross-species Comparisons

To enable seamless comparison across different species, orthologs are identified for each pair of organisms and are grouped into ortholog clusters. Ortholog information was derived from Mouse Genome Informatics (MGI) at Jackson Lab (www.informatics.jax.org), HomoloGene at NCBI (www.ncbi.nlm.nih.gov), and Ensembl (www.ensembl.org). Ortholog clusters were generated as follows: 1) the manually curated pairwise ortholog data among human, mouse, and rat from MGI were retrieved and clustered to form initial ortholog clusters. 2) The homology group data among human, mouse, rat, fly, and worm were analyzed to remove those in conflict with MGI data. The filtered homology group data were then entered into the ortholog clusters. 3) The whole genome pairwise sequence similarity data from Ensembl were processed to identify reciprocal best hits as candidate orthologs for all pairwise organisms among human, mouse, rat, fly, worm, and yeast. The candidate ortholog cluster. Qualified ortholog candidates were then entered against the existing ortholog cluster. Qualified ortholog candidates were then entered into the ortholog cluster specific gene identifiers were translated into universal ortholog cluster identifiers, studies performed on different species could then be compared based on the cross-platform principles as previously described for "Cross-platform comparisons".

Overview of NextBio Content

NextBio content is interactively engineered into over 60 million dynamic web pages.

Data/Biosets	> 2 billion data points and 30,000 study results
	> 4,000 studies (~80% of publically available data)
Biogroups	~ 34,000 gene sets
Diseases	> 65,000 concepts
Tissues	> 9,000 organs & tissues
Compounds	> 8 million compound clusters
Literature	> 18 million articles
Clinical Trials	> 56,000 trials

The NextBio search engine contains data that was collected and preprocessed from several major public and user generated sources.

Public Sites (partial list)	
NCBI GEO	
EBI Array Express	
Stanford Microarray Database (SMD)	
Japan's GeMDBJ	
Japan's NIBIO	
caBIG Consortium	
Sanger Center	
Jackson Lab Mouse Informatics	
dbGAP	
NCBI PubChem	
Broad Cancer Genomics	
International Genomics Consortium	

User Generated Content (examples) Stem Cell Consortium data Private company data Burnham Institute data Others

The predominant publically available experimental data type is from microarray-based gene expression experiments. As new types of platform data become more widely available they will continue to be integrated into the NextBio search engine: such as SNP, ChIP, DNA methylation, genome-wide association, comparative genomic hybridization, proteomic and phenotype data.

The NextBio search engine comprises over 60 million concept term and study specific HTML Home Pages and covers a significant portion of the world's public data across a growing subset of organisms. Figure 2 provides a summary of NextBio content according to organisms and different research areas. As the availability of public high-throughput data and platform technologies evolve, so will the distributions.

NextBio Indexes, Vocabularies and Ontologies

Gene Index – integrates millions of synonyms and reference IDs, developed by NextBio as indicated above - SNP Index: > 20 million reference SNPs, ~6 million SNP-Gene associations NextBio assembly of resources

SNOMED CT (disease)	www.ihtsdo.org/snomed-ct
FMA (Foundational Model of Anatomy)	http://sig.biostr.washington.edu/projects/fm/AboutFM.html
ATCC cell lines	www.atcc.org
Gene Ontology (functional attributes)	www.geneontology.org
Compound Cluster Index - developed by Nex	tBio from 11 sources, including:
PubChem Compounds	http://pubchem.ncbi.nlm.nih.gov
PubChem Substances	http://pubchem.ncbi.nlm.nih.gov
PubChem InChI/IUPAC	http://pubchem.ncbi.nlm.nih.gov
PubChem smiles/formulas	http://pubchem.ncbi.nlm.nih.gov
DrugBank	www.drugbank.ca
ChemIDPlus	www.nlm.nih.gov/pubs/factsheets/chemidplusfs.html
Stanford Compound Ontology (beta release)	

Authoritative Data Sources

NCBI's Online Mendelian Inheritance in Man (OMIM): 179 OMIM Studies and 1,435 Biosets. 2,730 distinct genes associated with 1,435 diseases with a total of 3,798 associations. http://www.ncbi.nlm.nih.gov/Omim/getmorbid.cgi

Wellcome Trust Sanger Institute's Cancer Gene Census: 226 diseases linked to 366 gene mutations with 688 distinct associations.

www.sanger.ac.uk/genetics/CGP/Census

Jackson Labs Mouse Genome Informatics (MGI): 587 diseases linked to 905 genes with 1,120 distinct associations. www.informatics.jax.org/phenotypes.shtml

University of Alberta's DrugBank: 945 drugs targeting 442 genes with 1,700 distinct associations. www.drugbank.ca

NIH's GeneTests data will soon be released into the NextBio system. www.geneclinics.org

Biogroup	Count	Live Link to Example in NextBio	Source Site
Broad MSigDB - Canonical Pathways*	473	GenMAPP: Prostaglandin Synthesis Regulation	www.broad.mit.edu/gsea/msigdb/index.jsp
Broad MSigDB - Positional Gene Sets	331	chr19p13	www.broad.mit.edu/gsea/msigdb/index.jsp
Broad MSigDB - Regulatory Motifs	500	PPARA binding site geneset 1	www.broad.mit.edu/gsea/msigdb/index.jsp
Gene Ontology	23,807	GO: angiogenesis	www.geneontology.org
InterPro	8,573	InterPro: Olfactory receptor	www.ebi.ac.uk/interpro
PMAP Peptidase Inhibitors	20	PMAP: All Peptidase Inhibitors	http://pmap.burnham.org
PMAP Proteases	7	PMAP: Metallo proteases	http://pmap.burnham.org
TargetScan miRNA targets DB	163	TargetScan: miR-23	www.targetscan.org

* Compilation of 12 pathway gene sets including KEGG, Reactome, BioCarta, GenMAPP and others.

NextBio Quality Control Process

Assessing Experimental Design

Data sets pre-processed by NextBio go through extensive quality control processes, about 20% of public data fails and is discarded. Similarly, if the data is contributed to NextBio by individual users or groups for public consumption, then it will go through an initial review by our scientific staff to make sure of the following:

- Experimental design is sound (including replication)
- Analysis approach is reasonable
- Extensive sample annotations and experimental details are provided
- · Analysis statistics is available within a result set
- Links to raw data is available for download

Assessing Statistical Significance

All of the raw data goes through rounds of quality control, normalization, and statistical analysis that depend on the data type and on the platform and experimental design used to generate these data. For example, for Affymetrixbased studies in which CEL files are available RMA normalization is applied (Parrish and Spencer 2004). If only MAS5 data is available, then per chip normalizations are applied to reduce inter-chip variability. Although not a prerequisite, the vast majority of processed data in the system falls into the category of case-control experimental design — a set of "test" samples is compared to a set of "control" samples using Welsh or similar t-test type. Basic cutoffs are applied: i) one of the two compared sample varieties must exceed a 20th percentile intensity cutoff, ii) pvalues less than 0.05, and iii) fold changes greater than 1.2 or less than -1.2. These are typically the lowest sensitivity thresholds of commercial microarray platforms. Features passing these cutoffs are maintained as the final differentially-expressed gene set, thereby constituting what we call a Bioset with pre-processed directional values. Additional quality control checkpoints are applied at different places depending on the type, platform, and source of experimental data. In cases of other data types, such as cell-based siRNA or proteomics, assay-specific preprocessing steps are applied. Another variety of pre-processing is applied to the "Atlas"-type studies - experiments in which multiple normal tissues and organs are profiled. Since there is no obvious control and "artificial" filtering out of genes from a tissue profile is not desirable (each gene has some "justifiable" low or high level in each tissue), we use a different strategy: For each gene its median across all samples in that study is computed. This serves as the "normal" expression level. Next, each gene's expression value in a given tissue is divided by its median across all tissues in that Study to compute fold changes relative to "normal" atlas-wide expression. Thus, each sample variety (tissue) is represented in a Bioset by all measured genes and their relative fold changes.

As part of the NextBio analysis protocol, the data is initially examined using diagnostic plots such as box-plots for each study. Per-chip normalization is applied when necessary to remove global chip-to-chip variability. Boxplots of post-normalized data are supplied with all public studies for user review. To further examine data quality and experimental design assumptions, hierarchical clustering of samples is used to visually assess separation of samples according to the treatment or test factors. If good separation is not seen for each factor of interest (i.e. factors the experiment was designed to test), it is an indicator that the data may not be good enough to construct reliable Biosets. These analyses, as well as the boxplot analysis, are also used to look for "bad" or "outlier" samples, with the determination on whether to exclude any samples and reanalyze is made on a case-by-case basis. To construct a clustering tree, a statistical test (e.g. ANOVA) is applied to identify a set of genes differentially expressed among different experimental conditions of interest. Clustering of samples using Pearson correlation and based on the statistically significant set of genes identified above is then performed. This is not a Bioset generation step and serves specifically to assess separation of samples based on the parameters tested in the experiment. As well, at a minimum, the number of genes passing the ANOVA (for all comparison parameters) must exceed the number of genes expected by chance. A histogram of the ANOVA p-value distribution from all elements is also generated and

examined for concordance with expected distribution for a study with statistically significant results (i.e. disproportionately lower p-values). This figure is also associated with each public dataset for users to validate study results significance.

Essentials of Data Security

NextBio is the leading search engine organizing the world's life sciences information. Our customers include the top pharmaceutical, biotechnology, medical, academic and institutional research organizations in the world. Our business demands state of the art security at every level, and security of customer data is NextBio's number one priority.

Our commitment to security is reflected in the enormous investments that we have made in our security infrastructure, our internal security policies, and our <u>Privacy Policy</u>. NextBio strives to attain the highest levels of information security as defined by the ISO (International Organization of Standards), PCI (Payment Card Industry), and the AICPA (American Institute of Certified Public Accountants). Using extensive firewall protection, intrusion detection systems, SSL/TLS-based encryption and proprietary security products, NextBio gives you the peace of mind that only a world-class security infrastructure can provide.

We further recommend that users take these steps to secure their own systems prior to using our service:

- Use current Web browsers that support strong SSL/TLS encryption, such as Internet Explorer 6.0 or above and FireFox 2.0 or above.
- Use an anti-virus application with updated engines and definitions.
- Use up-to-date patches of your computer's operating system and all local applications.

Security is paramount in everything that we do, and NextBio utilizes some of the most advanced technology for Internet security available today. To ensure the protection of your data, we have implemented a multi-faceted security policy that includes:

- Protection at the Application Level
- Protection at the Network Level
- Protection at the Facilities Level

Essentials of NextBio Enterprise Domain

NextBio is a Software-as-a-Service (SaaS) provider. As with most SaaS companies it is built on the principle of "single instance, multiple tenants" -- the same hardware is used to serve multiple tenants. The application consists of multiple domains with all information within a domain being available to only individuals within their domain. All data is logically partitioned with a domain or user id associated with each data item. NextBio uses the industry-standard Spring Security (ACEGI) framework to manage the access controls between users, groups and data items.

- Enterprise users will access NextBio through a secure private domain at <u>https://companyname.nextbio.com</u>. Along with this HTTPS private domain, a number of settings that greatly enhance the level of security can be configured. These include things such as password strength and policies, restricting certain IP addresses, session time-outs after a specified time of non-usage, and others.
- Inclusion of corporate data in "Individual Study Results" The significance of your private data is
 factored in and correlated with all other data in NextBio. In the results, you'd see data from your various
 projects interspersed with the public study data.
- Inclusion of corporate data in "Summary Results" Depending on query type, NextBio presents the
 most significant concepts within Tissue, Disease, Gene, Treatment and Biogroup columns in the
 Summary Results section. Intensive, sophisticated meta-analysis algorithms prioritize the most
 significant concepts from all studies specified by a query. Enterprise customer data will be included and
 influence the public contributions to Summary Results within their domain.
- Advanced Query Capability Enterprise customers can access interfaces that allow them to build multi-Bioset queries for direct side-by-side comparisons. Expression signatures can be aggregated and correlated gene by gene to discover highly relevant activities. For instance, to validate hypotheses one may want to combine results from several entirely independent studies measuring gene expression levels from clinical p53 status in breast cancer. Alternatively, one may have a comprehensive study with many clinical variables with a desire to compare gene expression levels within that study alone to tease apart clinical progression.
- Enterprise customers can access APIs, including the following:
 - o Search API
 - Data Import API
 - o Autocomplete API
 - Single Sign-On

These are expanded upon in the section titled 'Essentials of Integration via APIs'.

Essentials of Gene Query Processing and Results

Understanding the functional significance of genes requires the ability to investigate expression activity in a systematic way – in different organisms, across different tissues, disease states, and chemical and environmental perturbations. Absolute values, such as fold change, correlation coefficient, p-value, or any other statistical parameter representing gene activity in different types of measurements are converted into a normalized rank, using a combination of the gene's absolute value ranked relative to other measured genes and additional factors, such as the platform size. The final normalized rank indicates the significance of a gene's activity in a given condition within a study. The search function uses this rank to prioritize studies in which different disease states, compound treatments, or other biological factors have the most significant effect on that gene's activity. If orthologs for genes of interest exist, the search will automatically be performed across studies from different organisms. You will often find that the highest ranking study result from a query would have that gene as the #1 highest ranking gene in a Bioset within that study.

As shown under the 'experiments' tab in the ESR1 gene search example below, Pie Charts and Meta-categorization results are displayed directly below the gene description section. All relevant studies retrieved from a Gene Search are shown in the bottom 'Individual Study Results' section. In this case, for a Study to be present it would have to have a significant association to ERS1 changes. These Study results are then categorized into various associations in the 'sources of data and associations for experiments' section. Interactive Pie Charts divide the studies into Organisms and Data Types. Click on any slice of pie to specifically filter down to particular experiments. Not only are the 'individual study results' filtered to the selection, but recalculation of the top 'Normal tissue', 'Disease' and 'Treatment' categories occurs based on that subset of Studies. For instance, it is fascinating to see Treatment categories change when selecting different organisms. For mouse you are likely to see more gene treatments (knock out, conditional expression and the sort) than for rat where you'll likely see more compound treatments. This reflects the historical fact that the mouse became the model of choice for the first mammalian geneticists, while the rat became the model of choice for physiologists, nutritionists and toxicologists.

'Normal tissue', 'Disease' and 'Treatment' categories are derived from meta-analysis of the experimental design tags. Tags generally describe the essence of the experimental design (tissue, disease, treatment, etc), they are described in detail in another section. Meta-categorization for "normal tissues" and "diseases" exclude data from cell lines, as it is assumed that cell lines don't represent true models of normal tissues or diseases.

Gene Query Example, link out to:

http://www.nextbio.com/b/home/home.nb?g=esr1

gene > ESR1

The estrogen receptor (ESR) is a ligand-activated transcription factor composed of several domains important for hormone binding DNA binding, and activation of transcription. Alternative splicing results in several ESR1 mRNA transcripts, which differ primarily in their 5-prime untranslated regions. The translated receptors show less variability.[supplied by OMIM] view more >

ERbeta ERE binding defective mutants

NextBio Library/Metabolic disorders and Obesity view study details »

Organism Pie - human subset selected:

Selecting a wedge of pie will subset the experiments and recalculate meta-categories, as with human shown here. Selecting a category class or individual concepts also act as filters to show relevant studies.

Essentials of Bioset Query Processing and Results

The NextBio search engine enables any set of genes or proteins to be searched against all other studies in order to identify significant correlations with other data, providing an easy-to-understand biological context for the otherwise complex data. A researcher can load a set of genes with or without associated statistics into the NextBio search engine and instantly view significant correlations to all studies. Rank-based enrichment analysis prioritizes all Bioset-Bioset correlations to the queried Bioset.

The correlation score of one gene expression data set B1 (Bioset 1) with another data set B2 (Bioset 2) is determined by evaluating the significance of the overlapping genes between B1 and B2, in contrast with the random distributions within their respective platforms P1 and P2. The null hypothesis is that the distribution of overlapping genes in B1 and B2 are not significantly different from what would be expected randomly given the platforms P1 and P2. The alternative hypothesis is that there are more overlapping genes between B1 and B2 in the upper rankings than would be expected in random samplings from their platforms P1 and P2. To evaluate the statistical significance of B1B2 overlap contrasting against P1P2 overlap, a top to bottom scan is performed in the rank ordered gene lists B1 and B2. The overall correlation score is represented by the maximum score, adjusted by a multiple testing correction. Few assumptions are made about the Bioset data structure. General comparisons are enabled between data sets with small-tens or large-thousands of genes, with or without rankings, between data sets with or without directionalities, and between data sets from different data types, platforms or different species.

If a data set contains directional subsets, up-regulated and down-regulated genes, in the differentially expressed gene sets, then subsets with distinct directionality are automatically recognized and the analysis would indicate whether a positive or negative correlation is discovered. The positive or negative correlation call in Level 2 results (see below) is a generalized one, as you will often see subsets of genes positively and negatively correlating. Statistics are calculated for each pair-wise possibility. A positive correlation would show the same gene(s) up-regulated in both Biosets, or the same gene(s) down-regulated. A negative correlation would show the same gene(s) having opposite expression directionality, like up-regulated in one Bioset and down-regulated in the other. The 2x2 Correlation Table, found at the Level 3 results (see below), is interactive: filter by clicking on a particular quadrant, for say up-regulation across both Biosets will filter the gene table to those select genes.

As shown in the Bioset Search example below, meta-categorization results are displayed directly below the Bioset description section. Bioset-Bioset correlations are calculated for all data sets in the system and presented in the bottom 'Individual Study Results' section. Studies are prioritized by significance of Bioset-Bioset correlations. For instance, the Study containing the Bioset having the lowest p-value will be at the top of the list. Individual Study results are categorized into various associations in the 'sources of data and associations for experiments' section. 'Normal tissue', 'Disease' and 'Treatment' categorizes are derived from meta-analysis of the experimental design tags specific to each associated Bioset. Meta-categorization for "normal tissues" and "diseases" exclude data from cell lines, as it is assumed that cell lines don't represent true models of normal tissues or diseases. Meta-categorization for "Biogroups" is determined from associations to the gene set data within the single queried Bioset.

Bioset Query Example, link out to:

http://www.nextbio.com/b/home/home.nb?id=14568&type=bioset¤tTab=experiments

Bioset search results show ranked correlations to all other studies in NextBio. In this example, the correlations from a user selected study on clinical estrogen receptor status are shown contrasted to an independent study of expression changes across combinations of estrogen receptor, progesterone receptor and Her2 status.

Venn Diagram and Correlation Table Explanation

Level 3 results show two micrographs that visually illustrate Bioset –Bioset relationships. The Venn Diagram outlines the overlap of common genes between Biosets. The directional relationships in the correlation table are computed individually and colored by the strength of the p-value; lower p-values yield darker shades of orange and gray is null. Quadrants of the correlation table are interactive: mouse-overs reveal individual statistics and clicking on one will accordingly subset the results table below the micrographs. Enterprise customers can download tabular results accordingly.

	🗆 Breast cancer ER	- PR- Her2	2vs_ ER- PR-	Her2+	+	313	1.1E-13
313 r	matching genes	Sort By:	Bioset 1 Rank	•			hide
= k	bioset 1: expO Brea	st cancer:	ER negative _vs	vs : 🗖 bios	et 2: 🛈 Breast	cancer ER- PR- Her2-	_vs_ E
	6068 313 337	Ť	t i showir	ng all vs all		downloa	ad result:
		1					
Gene	e Bioset 1 Im	↓ ported ID	Bioset 1 Rank	fold change 1	Bioset 2 Impor	ted ID Bioset 2 Rank	fold cha
Gene PSAT	e Bioset 1 Im F1 223062_s_	↓ ported ID at	Bioset 1 Rank 44	fold change 1 5.3	Bioset 2 Impor 220892_s_at	ted ID Bioset 2 Rank 167	fold cha 1.55

Rank Score Explanation

Blue bars visually represent Rank Scores decreasing with relevance according to correlations between the query and the highest ranking bioset in a study. The magnitude is an aggregate score using the –Log(p-value) of the directional combinations, as explained below.

5)experiments			downlo	oad study re	sults (
ividual study i	results for: expO Breast cancer: ER negative	_vs_ ER po	ositive		
the second	expO project: Breast cancer subset to build on the technologies and outcomes of the Human nical management of cancer pati ny view study details »	3enome Proje	ct to		
rasults for: avn0 l	Expression analysis of triple negative and double ne	egative breas	st cancer		
results for: expO I 5 biosets	Expression analysis of triple negative and double ne	egative breas	st cancer organism: ho	omo sapiens	. –
results for: exp0 l 5 biosets Rank Score	Expression analysis of triple negative and double ne Breast cancer: ER negative _vs_ER positive Bioset Name	egative breas	st cancer organism: ho Common Genes	omo sapiens P-Value	
esults for: exp0 f 5 biosets Rank Score	Expression analysis of triple negative and double ne Breast cancer: ER negative _vs_ER positive Bioset Name Bioset cancer ER- PR- Her2vs_ ER+ PR+ Her2-	egative breas Correlation +	st cancer organism: ho Common Genes 2333	omo sapiens P-Value 1.9E-256	· -
esults for: exp0 i 5 biosets Rank Score	Expression analysis of triple negative and double ne Breast cancer: ER negative _vs_ER positive Bioset Name Breast cancer ER- PR- Her2vs_ER+ PR+ Her2- Breast cancer ER- PR- Her2vs_ER+ PR- Her2-	egative breas Correlation + +	organism: ho Common Genes 2333 1485	mo sapiens P-Value 1.9E-256 1.3E-175	· · · · · · · · · · · · · · · · · · ·
results for: exp0 I 5 biosets Rank Score	Expression analysis of triple negative and double ne Breast cancer: ER negative _vs_ER positive Bioset Name Breast cancer ER- PR- Her2vs_ER+ PR+ Her2- Breast cancer ER- PR- Her2vs_ER+ PR- Her2- Breast cancer ER- PR- Her2vs_ER+ PR+ Her2+	correlation + +	organism: ho Common Genes 2333 1485 937	mo sapiens P-Value 1.9E-256 1.3E-175 4.0E-143	- - - -
results for: exp0 I 5 biosets Rank Score	Expression analysis of triple negative and double ne Breast cancer: ER negative _vs_ER positive Bioset Name Breast cancer ER- PR- Her2vs_ER+ PR+ Her2- Breast cancer ER- PR- Her2vs_ER+ PR- Her2- Breast cancer ER- PR- Her2vs_ER+ PR+ Her2+ Breast cancer ER- PR- Her2vs_ER+ PR+ Her2+ Breast cancer ER- PR- Her2vs_ER+ PR- Her2+	Correlation + + +	organism: ho Common Genes 2333 1485 937 775	mo sapiens P-Value 1.9E-256 1.3E-175 4.0E-143 6.8E-83	· · · · · · · · · · · · · · · · · · ·

Genome-wide expression analysis of estrogen receptor-negative, progesteron receptor-negative and Her2-negative breast cancer

NextBio Library/Oncology view study details » homo sapiens

«previous 1 2 3 4 ... 287 next» show: 10 20 50 100 results

Correlations to Bioset 'expO Breast cancer: ER negative _vs_ ER positive'					
	ER- PR- Her2vs_ ER+ PR+ Her2- (1.9E-256)		ER- PR- Her2vs_ER-	PR- Her2+ (1.1E-13)	
Quad	p-value	-LOG(p-value)	p-value	-LOG(p-value)	
A	2.10E-131	130.68	9.60E-11	10.02	
B	no overlap		3.12E-02	1.51	
С	no overlap		no overlap		
D	9.30E-125	124.03	3.40E-05	4.47	

Bioset-Bioset Correlation Scoring

Aggregate Score = A-B-C+D	254.71	Aggregate Score = A-B-C+D	12.98
10E-AgScore	1.95E-255	10E-AgScore	1.05E-13

ER-PR-Her2vs_ER	- PR- Her2+ (1.1E-13	3)		
Breast cancer ER- F	PR- Her2vs_ ER- PR- Her2+	+	313	1.1E-13
313 matching genes	Sort By: Bioset 1 Rank 💌			hide
bioset 1: expO Breast	cancer: ER negative _vs vs : 📕 biose	t 2: ① Breast	cancer ER- PR- Her2-	_vs_ E
6068 313 337	t showing all vs all		downloa	ad result

	T.	1
T.	Α	В
1	С	D

Essentials of Biogroup Query Processing and Results

In an expression profile generated from a DNA microarray study, significant alterations in gene expression might manifest at the level of biological pathways or co-regulated gene sets, rather than at the level of individual genes. A gene set enrichment analysis strategy can be used to detect coordinate changes in the expression of groups of functionally related genes, such as metabolic pathways, transcriptional programs, and stress responses, that are distributed across an entire expression profile and subtle at the level of individual genes (Mootha et al. 2003; Subramanian et al. 2005; Sweet-Cordero et al. 2005). A Biogroup, in NextBio terms, represents a functionally related set of genes or proteins, such as a pathway, a gene ontology group or a protein family.

To evaluate the significance of a given gene set G (Biogroup) in a gene expression result Bioset B, we identify gene set G members and contrast their specific rankings in B against the background distribution in the platform P that is used in the gene expression experiment. Genes differentially expressed under the experimental design are ranked according to a selected criteria such as magnitude of changes resulting in a rank-ordered gene list in the result set B. Significance scores are evaluated as follows: the null hypothesis is that the distribution of gene set G members is not significantly different from what would be expected randomly given the platform P; the alternative hypothesis is that the gene set G members are enriched in the upper rankings among result set B compared with what would be expected in random samplings from the platform P. A top to bottom scan is performed in the rank-ordered gene list B, to compute the significance score of B contrasting against P at each rank R. The overall significance score is represented by the maximum score, adjusted by a multiple testing correction.

Direction of gene or protein expression changes within a data set is automatically recognized to form subsets for analysis (different directions are analyzed separately). A general approach was developed that makes few assumptions about the data structure, enables comparisons between Biogroups and Biosets with small (tens) or large (thousands) numbers of genes, does or does not include rankings, is compared against data with or without directionalities, and originates from different data types, platforms or across different species.

Meta-categorization results across all relevant studies retrieved from a Biogroup search are categorized into top associations in the section 'sources of data and associations for experiments'. 'Normal tissue', 'Disease' and 'Treatment' categories are derived from the tags assigned to data in the 'individual study results'. The color intensity indicates the significance relative to the top-ranked result. Click on any source concept ('category') to filter 'individual study results' to that concept. Meta-categorization for "normal tissues" and "diseases" exclude data from cell lines, as it is assumed that cell lines don't represent true models of normal tissues or diseases.

Biogroup Query Example, link out to:

http://www.nextbio.com/b/home/home.nb?q=angiogenesis

'Angiogenesis' is a Gene Ontology concept comprised of 114 human, 134 mouse, 123 rat and 2 fly genes. Biogroup search results show ranked correlations to studies in NextBio. In this example, the correlations from a user selected study on breast carcinoma are shown contrasted to 'Angiogensis' under the 'experiments' tab.

biogroup > angio	genesis						
① view biogroup details	•						
Blood vessel formation wh	en new vessels emerg	e from the proliferation of	pre-existing blood ve	essels, view i	more »		
experiments(1,798)	literature(38,675)	clinical trials(534)	full text(15,490)	more			
		1			show	filter	
a a survey a f data an	d ana a sistisma fa	n averaginaanta 🔿					
sources of data and	u associations io	experiments @					Interactive Pie Charts
organisms	data types	evpression				\sim _	Interactive Fle Charts
mouse rat	= gene = thera = muta	apeutic tions/phenotypes				\searrow	
normal tissues	diseases	l tr	eatments	L.	l see more associations		
Glomerulus	Clear cel	Il carcinoma of k	ZAP70 gene	L T	1000 11010 40000140010	·	Interactive
Neural stem cell	📕 Renal ce	II carcinoma 🛛 📕	LCP2 gene				Meta-Categories
Pericardium	Oncocyto	oma of kidney	LCK gene			$\langle \rangle$	derived from
Region of parenchyma Enithelium of small inte	of K 🖽 📕 Endome Is 📕 Nerve ini	triosis 🖽 📕	2-deoxiducose				experiments tags
Embryonic stem cell	Hammar	n-Rich syndrome	MLXIP gene				experiments tays
					download study result:	s 🔁	
individual study res	sults for: angioge	nesis 🕡					
E Del	termination of strom	al signatures in brea	st carcinoma			\leq	Level 1 result
results for: angiogen	iesis						
11 biosets				orga	anism: homo sapiens		
Rank Score	Bioset Name		Dire	ction Comn	non Genes P-Value		
	🗄 Solitary fibrous turr	ior _vs_ desmoid_type fit	promato Į	51	4.5E-51 (
	🗄 Gastrointestinal str	romal tumor _vs_ desmo	id_type f ↓	38	5.6E-29 (D	Level 2 results
	Dermatofibrosarco	ma protuberans _vs_ de:	smoid_type [35	1.9E-19 (1
	Dermatoribrosarco	oma protuberans _vs_ so	intary fibr T	35	6.0E-18	0 '	
	🗆 Malighant Tiprous F	histiocytoma _vs_ solitary	mbro T	30	2.1E-15	0	
	46 matching genes 80) matching features			hide	—	
	🔳 bioset: 🛈 Maligna	nt fibrous histiocytoma _v	/s vs : 🔳 biogrou	up: angioger	nesis		Level 3 results:
	0500 46 60	all obouring			download rooutto 🎮		Venn Diagram
	3303 40 00	Showing	011 YO 011		download results 🖻		Interactive 2x2
						\leq	Correlation Table
	_						
	Gene	Imported ID	Rank	fold	change		Brobo oot loval require
	PLXDC1	H11476	136	12			FIDDE SELIEVEI IESUIIS
	TNERSE124	A1008228 A1221536	100	10.5			
	COL15A1	AA455157	208	9,63			
	THY1	AI732848	220	9.32			
	SEMA5A	AA046679	275	-8.3	5		
	THY1	AI057267	327	7.62			
	CEACAM1	AA406571	415	-6.6	5		
	SEMA5A	AA284237	485	-6.20	3		
	PEXDC1	AA678084	493	6.2	-		
		«previous 1 2 3 4 81	TEXI» SHOW: TO 20 5	o roo result:	5 2.05.46		
	E Leiornyosarcoma	_vs_ solitary tiprous tumo	л 1	24	2.9E-15		More Level 2 results
	⊞ Synovial _vs_ solit	ary fibrous tumor	ſ	17	2.3E-12		
	L± Malignant fibrous H	nistiocytoma _vs_ desmo revious 1 2 next» show:	id_type f [10 20 50 100 results	24 5	3.6E-9	0 \	

Essentials of Disease Query Processing and Results

A disease query will return 'individual study results' based on tags under the 'experiments' tab. Meta-Categories are derived from the strength of Gene and Biogroup associations from the individual studies.

Disease Query example, link out to:

http://www.nextbio.com/b/home/home.nb?q=breast%20cancer

The search result shows all Studies where one can scan Study titles and short descriptions, or choose to view study

details. Level 2 results list the Biosets. Selecting the ⁽¹⁾ icon across from Bioset names will show a Bioset Inspector page with overview, feature dataset, experimental Study and Biogroup correlations.

disease > Breast cancer

A primary or metastatic malignant neoplasm involving the breast. The vast majority of cases are carcinomas arising from the breast parenchyma or the nipple. Malignant breast neoplasms occur more frequently in females than in males. -- 2003 view more »

10 biosets	organism: homo sapiens 🛛 🗕	
Bioset Name		
Breast cancer ER+ tamoxifen-treated patients - Dis	0	
Breast cancer ER+ tamoxifen-treated patients - LN+	0	
Breast cancer ER+ tamoxifen-treated patients - Rel	0	Level 2 results
Breast cancer LN- non-treated patients - Distant m	0	
Breast cancer LN- non-treated patients - ERvs	0	Select (i) icon t
Breast cancer LN- non-treated patients - Relapse	0	
Breast cancer ER+ tamoxifen-treated patients - Gra	© \	VIEW DIUSEL
Breast cancer ER+ tamoxifen-treated patients - Gra	0	Inspector
Breast cancer LN- non-treated patients - Grade 2	0	
Breast cancer LN- non-treated patients - Grade 3	(j)	

Purpose: A number of microarray studies have reported distinct molecular profiles of breast cancers (BC):

basal-like, ErbB2-like and two to three lumi...

NextBio Library/Oncology view study details »

homo sapiens

Choosing a category from the 'sources of data and associations for experiments' will apply this concept as a filter and display relevant results. This is shown below after selecting the highest ranking, data-driven gene category 'ESR1'. Pie charts will change accordingly to represent only studies where the ESR1 gene is significantly changing or a member of validated data types. Combinations of pie chart and meta-categories are possible, for instance one could choose to limit results to human studies using the organisms pie and 'P53 Signaling Pathway' from the Biogroups meta-categories.

disease > Breast cancer A primary or metastatic malignant neoplasm involving the breast. The vast majority of cases are carcinomas arising from the breast parenchyma or the nipple. Malignant breast neoplasms occur more frequently in females than in males. -- 2003 view more * literature(10,131) clinical trials(318) full text(3,795) experiments(27) more show filter sources of data and associations (?) all sources > ESR1 organisms data types human gene expression mutations/phenotypes mouse rat ESR1 category selected denes biogroups + see more associations ESR1 Cell Cycle ER882 Cell Communication CDH1 P53 Signaling Pathway 📕 Wap Growth factor, receptor TP53 Focal Adhesion BRCA1 Cytokine Cytokine Recepto...

individual study results for: Breast cancer in ESR1 ③

Breast cancer grade classification study
 Histological grading of breast cancer defines morphological subtypes informative of metastatic potential,
 although not without considerable inter-obse...
 NextBio Library/Oncology view study details >
 homo sapiens

Aberrations linked to breast cancer pathophysiologies

results for: Breast ca	ncer		see: all bios	sets filtered by	ESR1	
12 biosets			organism:	: homo sapiens	-	
Rank Score	Bioset Name	p-value	activity type	activity value		
	🗄 Breast cancer_Basal-like _vs_ normal-like tumors	6.3E-7	fold change	↓-30.16	(i)	
	Breast cancer_ER negative _vs_ ER positive tumors	3.3E-18	fold change	↓-17.89	(i)	
	Breast cancer_PR negative _vs_ PR positive tumors	1.2E-10	fold change	↓-7.596	(i)	
	🗄 Breast cancer_Grade 3 tumors _vs_ Grade 1	3.9E-14	fold change	↓-11.85	(i)	
	🗄 Breast cancer_p53 positive, mutated _vs_ p53 wild	0.0001	fold change	↓-7.083	0	ESR1 expression
	Breast cancer_Dead of disease _vs_ alive	0.0389	fold change	↓ -2.333	(i)	values in Level 2
	🗄 Breast cancer_ERBB2-like tumors _vs_ normal-like t	0.0014	fold change	↓-5.136	()	
	⊞ Breast cancer_Grade 2 tumors _vs_ Grade 1	0.0028	fold change	↓ -1.925	(i)	
	Breast cancer_Stage 4 tumors _vs_ Stage 1	0.0274	fold change	↓-1.392	()	
	Breast cancer_ERBB2 positive _vs_ ERBB2 negative t «previous 1 2 next» show: 10 20 50 100 re	0.0046 sults	fold change	↓ -1.398	1	

This study explores the roles of genome copy number abnormalities (CNAs) in breast cancer pathophysiology by identifying associations between recurren... NextBio Library/Oncology view study details >

homo sapiens

Expression analysis of triple negative and double negative breast cancer Genome-wide expression analysis of estrogen receptor-negative, progesteron receptor-negative and Her2-negative breast cancer

NextBio Library/Oncology view study details »

Essentials of Tissue and Organ Query Processing and Results

A tissue query will return 'individual study results' based on tags. Meta-Categories are derived from the strength of Gene and Biogroup associations from the individual studies.

Tissue Query Example, link out to:

http://www.nextbio.com/b/home/home.nb?q=liver

Search results show all liver Studies where one can scan Study titles and short descriptions, and choose to **view study details**. Level 2 results list the Biosets, by selecting (i) icon across from Bioset names the complete Bioset description, the dataset and other information can be reviewed.

tissue > Liver see page for author "liver" The largest gland of the body, lying beneath the diaphragm in the right hypochondrium and upper part of the epigastrium; it is of irregular shape and weighs from 1 to 2 kg, or about 1/40 the weight of the body. It secretes the bile and is also of great importance in both carbohydrate and protein metabolism, view more » experiments(165) literature(714,087) clinical trials(10,774) full text(80,195) more show filter sources of data and associations for experiments ③ Interactive Pie organisms data types human gene expression Charts mouse rat Interactive biogroups see more associations genes Meta-Categories Sult3a1 Cytochrome P450, E-class,. ORM1 Complement and Coagulatio... derived from FM03 PPAR Signaling Pathway Study data ALB Cytochrome P450 FGB Metabolism of Xenobiotics. HA02 Gamma Hexachlorocyclohexa. individual study results for: Liver ③ E Diverse liver drug signatures These data support the publication titled "Classification of a large micro-array dataset. Algorithm comparison and analysis of drug signatures.". Some. NextBio Library/Pharmacology and Toxicology view study details » rattus norvegicus Level 1 results IT D-penicillamine treated rat liver Idiosyncratic drug reactions (IDRs) cause significant morbidity and mortality. In an animal model of IDRs, 50-80% of Brown Norway rats exposed to D-pe.. NextBio Library/Pharmacology and Toxicology view study details » rattus norvegicus Expression data from p38 knock out versus wild type fetal liver results for: Liver Level 2 results 2 biosets organism: mus musculus Select (1) icon p38alpha knock out fetal liver E13.5 _vs_ wild typ. 1 to view Bioset p38alpha knock out fetal liver E15.5 _vs_ wild typ... 1 Inspector The mitogen-activated protein kinase (MAPK) p38alpha controls inflammatory responses and cell proliferation. Using mice carrying conditional p38alpha NextBio Library/Pharmacology and Toxicology view study details » mus musculus Interactive Meta-Categories derived from Study data

Choose a category from the 'sources of data and associations for experiments' to apply a concept as a filter and display relevant results, as shown below for 'PPAR Signaling Pathway'.

http://www.nextbio.com/b/home/home.nb?q=liver#bgf=199591&cat=Biogroups&subcat=PPAR%20Signaling%20Path way&tab=data&tf=PPAR%20Signaling%20Pathway

The isolation of hepatic stem cells from the adult liver has not yet been achieved due to the lack of specific

surface markers. To identify new surfac... NextBio Library/Stem Cells, Differentiation & Development view study details »

mus musculus

Essentials of Treatment Query Processing and Results

A treatment or drug query will return 'individual study results' based on tags. Meta-Categories are derived from the strength of Gene and Biogroup associations from the individual studies.

Treatment Query Example, link out to:

http://www.nextbio.com/b/home/home.nb?q=tamoxifen

The search result shows all relevant Studies where one can scan Study titles and short descriptions, and choose to **view study details**. Level 2 results list the Biosets, by selecting (i) icon across from Bioset names the complete Bioset description, the dataset and other information can be reviewed.

Choose a category from the 'sources of data and associations for experiments' to apply a concept as a filter and display selected results, as shown below for 'ESR1'.

treatment > Tamoxifen see other results (?)

		Description:	One of the selective estroge Tamoxifen acts as an anti-e	n receptor modulato strogen (inhibiting aj agent) in cholestero	rs with tissu gent) in the r I metabolisr	e-specific activities. nammary tissue, but n hone density and					
	Ý		cell proliferation in the endo	metrium. (PubChem]	n, bone denony, and					
	\checkmark	Drug Type:	Small Molecule; Approved	mall Molecule; Approved							
		Pharmacology:	Tamoxifen belongs to a clas modulators (SERMs), which Tamoxifen has the same nu side chain (trans isomer) wi	moxifen belongs to a class of drugs called selective estrogen receptor odulators (SERMs), which have both estrogenic and antiestrogenic effects. moxifen has the same nucleus as diethylstilbestrol but possesses an additional de chain (trans isomer) which accounts for its antiestrogenic activity.							
		Mechanism of Action:	Tamoxifen binds to estroger the receptor. This results in dependent genes. The prolo these results in reduced DN blockade of estradiol uptake tamoxifen interacts with othe with different estrogen recep and antiestrogenic effects.	n receptors (ER), ind a blockage or chang onged binding of tam IA polymerase activit e, and decreased est er coactivators or cor otors, ER-alpha or El	ucing a conf e in the expr ioxifen to the y, impaired t rogen respo epressors ir R-beta, prod	ormational change in ession of estrogen nuclear chromatin of hymidine utilization, unse. It is likely that the tissue and binds ucing both estrogenic					
		Indication:	for the treatment of breast ca	ancer							
		Half Life:	Distribution: 7 to 14 hours; E	Elimination: 5 to 7 da	ys						
viev	/ more »	~									
	experiments(11)	literature(4,983)	clinical trials(169)	full text(2,128)	more						
						show filter					
so	urces of data and	lassociations	⑦ all sources > ESR1								
or	ganisms	data types									

organisms	data types		
• human • mouse	gene expression therapeutic	ESR1 selected in Meta-Categories	
genes	biogroups	see more associations	
ESR1	Cell Cycle		
ACCN5	Cell Cycle G1 to S contro		
Pri2c2	miR-381		
A530021J07Rik	MTA3 Pathway		
MLSTD2	Apoptotic DNA Fragmentati		
DDIT4	DNA Replication Reactome		

individual study results for: Tamoxifen in ESR1 (?)

1.000010	Dissourianie	p ionae	acting type	aoung raiao		 ·
	\boxplus Left ventricle from ATF6 transgenic mouse treated	0.0043	fold change	↓-2.46	0 <	ESR1 expression
						revealed
ne expression analysis (of the effect of activating ATF6 in the hearts of transgenic mice	e upon trea	tment with			

Ger tamoxifen. NextBio Library/Cardiovascular disorders view study details »

mus musculus

Essentials of Advanced Search

Advanced Search is a utility only available to Enterprise customers, it provides users the ability to set up custom queries that include a collection of high interest Biosets or Studies for direct comparison. Biosets or Studies can be a mix from Private User, Private Enterprise and NextBio Public Libraries.

Advanced Search can be performed across Genes or Biogroups. By selecting 'query across all genes' users identify the most highly up- or down-regulated genes across the queried set of Biosets or Studies. By selecting 'query across all biogroups' users identify the most highly correlated functionally related gene sets across the queried set of Biosets or Studies.

There are a number of parameters which are used for computing most relevant genes. The most important two parameters are the activity level of a gene in each Bioset and the specificity (the number of Biosets in which the gene is active). The current Advanced Search query limits users to no more than 50 Biosets or 5 Studies at a time

By way of example, let's say I'm a breast cancer researcher that is interested in comparing a number advanced clinical samples for high ranking correlations to important genes and functionally related gene sets. I find and select the following seven Biosets from four independent Studies to broadly validate findings and discover nuances via NextBio Advanced Search.

Bioset Name	Study ID (content source)
Breast cancer - ER- p53wt _vs_ ER+ p53wt	GSE4922 (GEO)
Breast cancer - Elston histologic grade 3 _vs_1	GSE4922 (GEO)
Breast cancer_Basal-like _vs_ normal-like tumors	E-TABM-158 (Array Express)
Breast cancer_PR negative _vs_ PR positive tumors	E-TABM-158 (Array express)
Breast cancer - Basal _vs_ normal-like	GSE1456 (GEO)
Apocrine breast tumors (ER-AR+) _vs_ luminal (ER+AR+)	GSE1561 (GEO)
Breast cancer_LN- tumors_ER (-) _vs_ ER(+)	GSE2034 (GEO)

Loading of these Biosets was initiated with a search for 'breast cancer' and viewing individual Studies to determine interest in adding specific Biosets to an Advanced Search. Selecting the Advanced Search is will populate Studies and Biosets with this icon, then selecting the icon associated with the data of interest will place into the bin at right of screen. This is repeated until all data sets of interest are loaded. Then choose whether to do Advanced Search for 'Query Against All Genes' or 'Query Against all Biogroups'. The following screenshots capture the results of the two.

Advanced Search Example - 'Query Against All Genes'

The Matrix Diagram to the left of every 'individual gene result' depicts a box for each of the seven Biosets queried, they are colored and shaded by the general direction and strength of association (red = up-regulated, green = down-regulated). Level 1 results show rank ordering of Genes. Level 2 results show the individual expression results for that gene in each Bioset and Level 3 shows additional statistical information.

insets >									James Flynn s	ign ou
Apoo Brea Brea Brea Brea Brea Brea	crine breast ast cancer - ast cancer - ast cancer_ ast cancer - ast cancer_ ast cancer_	t tumors (ER-AR Elston histologi ER- p53wt _vs_ LN- tumors_ER Basal _vs_ norr PR negative _vs_ Basal-like _vs_ r	+)_vs_luminal (ER+AR c grade 3_vs_1 0 ER+ p53wt 0 (-)_vs_ER(+) 0 nal-like 0 _PR positive tumors 0 normal-like tumors 0	+) ①				☐ boo ☐ fon ☑ e-n	okmark this page ward this page hail feedback	
								bioset:	5	~
dividual gen	e results	:						Breast	cancer - ER- p53wt	3
enes biogroups	s						show filt	er Breast	cancer - Elston	3
	SR1							histolo Apocri	gic grade 3 _vs_ 1 ne breast turnors 🌐	
ogen receptor 1	or (ESR) is al	licend activated tra	pecription factor composed of	f several domai	ine important fo	2 r		200 A.C	······································	
none binding, DN	IA binding, an	d activation of trans	scription. Alternative splicing r	es	ins important re	51		cieara		
ificant in 7/7 bios	sets Homosa	apiens view gene d	letails »						uery against all gene	s
oil factor 1 nbers of the trefo	FF1 bil familv are c	haracterized by ha	ving at least one copy of the t	refoil motif. a 4	0-amino acid			que	ry against all biogrou	1DS
ain that contains ificant in 7/7 bios	three conser sets Homo s	rved disulfides. The apiens view gene d	y are stable secretory protein letails »	is ex						
	CUBE2									
sults:							r	_		
biosets	bie e et e							-		
ank score		ame zt.capcar Elstop bi	stologic grada 3. vo. 1	p-value 1.0⊑.17	fold chapge	activity value	0 0			
	Break	st cancer - ER- n53	at ve FR±n53wt	9.6E-7	fold change	1-0.104	0 0			
	Breas	st cancer - Basal IV	/s_normal-like	1.0E-16	fold change	1 -8 778	0 0			
	Breas	st cancer_PR negat	ive _vs_PR positive tumors	1.3E-12	fold change	1 -6.421	0 0		Level 2 resul	ts
	Breas	st cancer_LN- tumo	rs_ER (-) _vs_ER(+)	8.6E-28	fold change	1 -6.882	0 0			
	🔲 🕀 Breas	st cancer_Basal-like	e_vs_normal-like tumors	0.0026	fold change	↓-10.03	0 0			
				2055		1.4.347				
	FF3	rine breast tumors ((ER-AR+) _vs_ luminal (ER+A	3.26-3	fold change	1-4.041	υQ			
bil factor 3 (intes abers of the trefo ain that contains ificant in 7/7 bios	FF3 tinal) oil family are o three conset sets Homo s (100A8	rine breast turnors i characterized by ha rved disulfides. The apiens view gene (<pre>(ER-AR+) _vs_ luminal (ER+A wing at least one copy of the ey are stable secretory protein letails ></pre>	trefoil motif, a	fold change 40-amino acid	1-4.041	U Q			
il factor 3 (intes bers of the trefo ain that contains fricant in 7/7 bios sults: piosets	FF3 tinal) il family are o three conset sets Homo s 100A8	rine breast tumors i characterized by ha rved disulfides. The apiens view gene o	(ER-AR+) _vs_ luminal (ER+A wing at least one copy of the y are stable secretory protein letails »	trefoil motif, a ns ex	fold change	1	UQ			
il factor 3 (intest bers of the trefs ain that contains ficant in 7/7 bios ficant in 7/7 bios sults: biosets ank score	FF3 tinal) il family are o three conset sets Homo s 100A8 bioset n	rine breast tumors i characterized by ha rved disulfides. The apiens view gene o	(ER-AR+) _vs_ turninal (ER+A wing at least one copy of the py are stable secretory protein letails >>	refoil motif, a ns ex	fold change 40-amino acid activity type	activity value				
il factor 3 (intes bers of the trefo in that contains ficant in 7/7 blos ficant in 7/7 blos Sults: biosets ank score	bioset n	rine breast tumors i characterized by ha rved disulfides. The apiens view gene o sine st cancer - ER- p53	<pre>(ER-AR+) _vs_tuminal (ER+A wing at least one copy of the y are stable secretory proteil letails > (wt _vs_ER+ p53wt intelexic mode 2, we d)</pre>	p-value	fold change 40-amino acid activity type fold change	activity value				
il factor 3 (intes bers of the trefo ficant in 7/7 bios ficant in 7/7 bios sults: biosets ank score	bioset n bio	rine breast tumors i characterized by ha rved disulfides. The apiens view gene o apiens view gene o st cancer - ER- p53 st cancer - Elston h	<pre>(ER-AR+) _vs_luminal (ER+A wing at least one copy of the vy are stable secretory proteil letails > wvt_vs_ER+ p53wt istologic grade 3 _vs_1 (ER_AR+) _vs_luminal (EP+AR)</pre>	p-value 0.0009 7.2E-8	fold change 40-amino acid activity type fold change fold change	activity value 1 6.101 1 4.491 1 1 2 75		-		
il factor 3 (intes ibers of the trefo in that contains ificant in 7/7 bios sults: biosets ank score	bioset n bio	rine breast tumors i characterized by ha rved disulfides. The apiens view gene (sine st cancer - ER- p53 st cancer - Elston h crine breast tumors st cancer - Besch	<pre>(ER-AR+) _vs_luminal (ER+A wing at least one copy of the y are stable secretory proteil letails > wvt_vs_ER+ p53wt istologic grade 3 _vs_1 (ER-AR+) _vs_luminal (ER+A vs_pormal like</pre>	p-value 0.0009 7.2E-8	fold change 40-amino acid activity type fold change fold change fold change	activity value † 6.101 † 4.491 † 12.75 † 4.750				
il factor 3 (intes ibers of the trefo in that contains ificant in 7/7 bios sults: biosets ank score	bioset n bio	rine breast tumors i characterized by ha rved disulfides. The apiens view gene (storme st cancer - ER- p53 st cancer - Elston h crine breast tumors st cancer - Basal st cancer - N. tumor	<pre>(ER-AR+) _vs_luminal (ER+A wing at least one copy of the y are stable secretory protein letails > wt_vs_ER+ p53wt istologic grade 3 _vs_1 (ER-AR+) _vs_luminal (ER+A vs_normal-like rs_ER (a) _vs_ER(a)</pre>	p-value 0.0009 7.2E-8 0.0004 β.05-12	fold change 40-amino acid activity type fold change fold change fold change fold change	activity value † 6.101 † 4.491 † 12.75 † 4.769 † 6.300			Level 2 resul	ts
in factor 3 (intes ibers of the trefo in that contains if icant in 7/7 bios isuits: biosets ank score	bioset n bio	rine breast tumors i characterized by ha rved disulfides. The apiens view gene o since state of the state st cancer - ER- p53 st cancer - ER- p54 st cancer - ER- p54	<pre>(ER-AR+) _vs_luminal (ER+A wing at least one copy of the y are stable secretory proteil letails > wt _vs_ER+ p53wt istologic grade 3 _vs_1 (ER-AR+) _vs_luminal (ER+A vs_normal-like ms_ER (-) _vs_ER(+) e, vs_normal-like tumors</pre>	p-value 0.0009 7.2E-8 00005 0.0004 6.9E-12 0.0263	fold change 40-amino acid activity type fold change fold change fold change fold change fold change fold change	activity value			Level 2 resul	ts
il factor 3 (intes ibers of the trefo in that contains ificant in 7/7 bios sults: biosets ank score	bioset n Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea: Brea:	rine breast tumors i characterized by ha rved disulfides. The apiens view gene o st cancer - ER- p53 st cancer - Elston h crine breast tumors st cancer - Basal st cancer _ Basal st cancer _ Basal ik st cancer _ R negal	<pre>(ER-AR+) _vs_luminal (ER+A wing at least one copy of the y are stable secretory proteil letails > wt_vs_ER+ p53wt istologic grade 3 _vs_1 (ER-AR+) _vs_luminal (ER+A vs_normal-like ms_ER (-) _vs_ER(+) e _vs_normal-like tumors tive _vs_PR positive tumors</pre>	p-value 0.0009 7.2E-8 0.0005 0.0004 6.9E-12 0.0263 0.0474	fold change 40-amino acid activity type fold change fold change fold change fold change fold change fold change fold change fold change fold change	activity value			Level 2 resul	ts
ill factor 3 (intes bers of the trefo in that contains ficant in 7/7 blos ficant in 7/7 blos sults: biosets ank score	bioset n bio	rine breast tumors i characterized by ha rved disulfides. The apiens view gene o st cancer - ER- p53 st cancer - PR negal st cancer_PR negal ifeatures	<pre>(ER-AR+) _vs_luminal (ER+A wing at least one copy of the y are stable secretory protein letails >> wt _vs_ER+ p53wt istologic grade 3 _vs_1 (ER-AR+) _vs_luminal (ER+A vs_normal-like rrs_ER (-) _vs_ER(+) e _vs_normal-like tumors tive _vs_PR positive tumors</pre>	p-value p-value p-value 0.0009 7.2E-8 0.0004 6.9E-12 0.0263 0.0474	fold change 40-amino acid 40-amino acid fold change fold change fold change fold change fold change fold change	activity value	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Level 2 resul	ts
information and the track of th	bioset n bio	rine breast tumors i characterized by ha rved disulfides. The apiens view gene of st cancer - ER- p53 st cancer - ER- p53 st cancer - Elston h crine breast tumors st cancer - Basal st cancer _ Basal ist cancer _ PR negal ifeatures imported name	<pre>(ER-AR+) _vs_luminal (ER+A wing at least one copy of the y are stable secretory proteil letails > wt_vs_ER+ p53wt istologic grade 3 _vs_1 (ER-AR+) _vs_luminal (ER+A vs_normal-like irs_ER (-) _vs_ER(+) e _vs_normal-like tumors tive _vs_PR positive tumors rank fold change proteiled rank fold change</pre>	p-value p-valu	fold change 40-amino acid activity type fold change fold change fold change fold change fold change fold change fold change	activity value	U Q 0		Level 2 resul	ts
in factor 3 (intes inbers of the trefo ain that contains ificant in 7/7 bios suits: biosets ank score	bioset n bio	rine breast tumors i characterized by ha rved disulfides. The apiens view gene of st cancer - ER- p53 st cancer - ER- p53 st cancer - Elston h crine breast tumors st cancer - Basal ist cancer _Basal -iik st cancer _PR negal ifeatures imported name 202917_s_at	<pre>(ER-AR+) _vs_luminal (ER+A wing at least one copy of the y are stable secretory proteil letails > wt_vs_ER+ p53wt istologic grade 3 _vs_1 (ER-AR+) _vs_luminal (ER+A vs_normal-like irs_ER (-) _vs_ER(+) e _vs_normal-like tumors tive _vs_PR positive tumors rank fold change p 255 1.995 (1)</pre>	p-value test 0.00474 372	fold change 40-amino acid activity type fold change fold change fold change fold change fold change fold change fold change fold change fold change fold change	activity value	U Q 0		Level 2 resul	ts

The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calciumbinding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of ...

significant in 7/7 biosets Homo sapiens view gene details »

Advanced Search Example - 'Query Against all Biogroups'

The Matrix Diagram to the left of every Biogroup in 'individual biogroup results' depicts a box for each of the seven Biosets queried, they are colored and shaded by the general direction and strength of association (red = up-regulated, green = down-regulated). Level 1 results show the breadth of Biogroup source types: Broad MSigDB - Regulatory Motifs, Broad MSigDB - Canonical Pathways, InterPro common protein domains, TargetScan miRNA targets DB and others. Level 2 results show the individual Bioset associations to that Biogroup and Level 3 shows the Venn Diagram, interactive Correlation Table and the common genes.

biogoto N										James Flynn	sign out	
prosets >	Anocrine	hreast tumors (f	ER-AR+) vs. lumi	nal (FR+AR+) @								
	Breast c	ancer - Elston hi	stologic grade 3 _v	s_1 ©						bookmark this page		
	Breast c	ancer - ER- p53v ancer I N- tumor	vt_vs_ER+p53wt = EP(-) ve_EP(-	0 N 0					i	ៅ forward this page		
	Breast c	ancer - Basal _vs	s_ normal-like @	., .					1	🖂 e-mail feedback		
	Breast c	ancer_PR negati	ve_vs_PR positive	e tumors @								
	Dreast C	aricer_basal-like	_vs_ normal-like ti	imors @					1	🔇 advanced search 🛛 🕐	-	
individual	biogra	in results:							t	biosets	~	
marviada	Diogram	ip results.								Breast cancer - ER- p53wt _vs_ ER+ p53wt		
genes bio	groups						<u>st</u>	<u>now f</u>	<u>ilter</u>	Breast cancer - Elston	\times	
	∎ TTGT	TT_FOXO4								Apocrine breast tumors	⊠ 😽	
Broad MSigDB significant in 7	77 biosets	y Motifs View bio	group details »							olear all		
		ACA FREAC2								guery against all gene	es l	
Broad MSigDB	- Regulator	y Motifs view bio	ogroup details »									
significant in 7		Suele								query against all biogro	ups	
Broad MSigDB	- Canonica	∠ycie IPathways view	biogroup details »									
significant in 6	6/7 biosets											
Broad MSigDB	E CTTT	GT_LEF1	aroun deteile »									
significant in 6	6/7 biosets	y Mours view bio	ugroup details »									
	E TGG	AAA_NFAT										
Broad MSigDB significant in 7) - Regulator //7 biosets	y Motifs view bio	group details »									
		GA_LEF1										
Broad MSigDB significant in 7) - Regulator //7 biosets	y Motifs view bio	ogroup details »									
-	🗉 🗄 Smal	I chemokine, inte	erleukin-8-like									
InterPro vie significant in 6	w biogroup 7 biosets	details »										
TargetScan m	∃ ⊞ miR- niRNA targe	19 ts DB view biogr	oup details »									
significant in t	5// biosets		and December									
		gen Processing	and Presentation									
results:												
4 biosets									_			
rank score	:	bioset name			direction	common ge	nes p-value					
		🗄 Breast cancer	- ER- p53wt _vs_ ER	+ p53wt	1	25	9.3E-21	1	9		le	vel 2 results
		🗄 Breast cancer	_LN- tumors_ER (-) _	vs_ER(+)	1	28	4.8E-11	0	9			
		Breast cancer	_Basal-like _vs_ norm	hal-like tumors	1	27	3.0E-7	1	9			
		🗄 Breast cancer	 Elston histologic gra 	ade 3 _vs_1	1	16	0.0024	1	Q			
Broad MSigDE	3 - Canonic	al Pathways view	w biogroup details »									
significant in 4	4/7 biosets											
	EGF	-like calcium-bir	nding									
recuite:												
6 biosets												
rank score		bioset name			directio	in common	genes p-value					
		🗄 Breast cancer -	- Elston histologic grad	de 3_vs_1	Ļ	32	1.1E-19	0	9	1		
		Breast cancer	- Basal _vs_ normal-lil	(e	1 L	38	4.9E-19	(i)	Q		Le	vel 2 results
		Breast cancer_	PR negative _vs_ PR	positive tumors	1	17	2.6E-6	(1)	9		- ٦	
	2	I matching genes	s 35 matching featu	ires			hide					
		hioset: O Brees	et cancer. DR negative	ve DRin veri	biogrour	. FOE like cs	leium binding					
		BIOSCI. O DI COL	st cancel_rtt negative	_vs_rrcp vs. i	biogroup). EOI 4116 66	iciani-binang					
			all									
		3302 24	88 t st	nowing all vs all								
			1									
	G	ene	Imported ID	Rank	fo	d change						
	s	CUBE2	219197_s_at	5	-6	6.421	(D		1		
	С	OMP	205713_s_at	207	-2	2.073	(D		<	Le	vel 3 results
	E E	CAN 7	215646_s_at 207300 ∘ ⇔t	311	-1	.91	(D				
	Т	HRS4	204776 at	454	-1	781	0	D				

Essentials of Data Import and Tagging

A detailed exercise describing 'Data Import and Tagging Best Practices' is available upon request.

Import files may consist of a simple list of genes or be more content rich, containing preprocessed data and the results of statistical analysis. Import files can be in .txt, .csv or .xls file formats. NextBio allows users to import standard numerical and statistical columns (fold change, p-value, score, rank, correlation) and a maximum of 5 user-defined columns that will be carried through for reference. The minimum requirement is that your file contains a column name and a list of recognizable identifiers. NextBio recognizes most public and standard commercial platform identifiers: including, NCBI Gene IDs, NCBI Official Gene Symbols, NCBI accession numbers, ENSEMBL IDs, RefSeq IDs, IPI IDs, and platform IDs from Affymetrix, Illumina, Agilent and GE Healthcare. If a custom platform is being used, then we recommend using NCBI Official Gene Symbols or RefSeq IDs if splice variant probes are present. Complete lists of allowed column names and supported platforms are described at the end of this document.

NextBio maps the Imported ID to the Gene Index, recognizes numerical column types and converts one of these to ranks. The primary columns used for ranking are the Gene Name and directional Fold Change columns which are minimally recommended for most purposes. If Fold Change values are not available, then a simple list of feature identifiers can be used, or columns containing other statistical measures can be added that will fully engage the rank-based correlations done by NextBio. If more than one standard statistical column is present, NextBio picks one for ranking in the order:

Rank \rightarrow Fold change \rightarrow P-value \rightarrow Score

Gene Name	Fold Change	P-Value	Test Expression	Control Expression
34756_g_at	-2.50	0.0459	22.9	18.4
39805_at	1.43	0.0357	139.6	113.7
31608_g_at	1.94	0.0202	99.5	69
36976_at	-1.93	0.0203	34.1	17.6
38612_at	1.68	0.0151	50.6	34.2
41724_at	-4.44	0.0117	329.4	266.2

Example of a stand	lard NextBio Im	port format:
--------------------	-----------------	--------------

Data tagging is an optional, but very important component of NextBio. Vocabulary sources that support tagging include the following: Gene Index (developed by NextBio), dbSNP (SNP rs#), SNOMEDCT (disease), Foundational Model of Anatomy (tissues/organs), PubChem/DrugBank (compounds) and ATCC cell lines (biosource). Although adding tags is not necessary, it is highly recommended that you add tags where applicable for sample source, experimental design, tissue, disease, treatment and genetic modification. In general, tagging should only describe the main attributes of the experimental design, not the experimental results or observations (don't tag data with a top gene found to be interesting). Tagging is an important process which provides semantic structure to your data. Search results are significantly improved once the data is tagged. Furthermore, tagging can be used to bring up your study within an appropriate context, or for additional computations available to Enterprise users. It also helps your colleagues and collaborators quickly understand the biological background of the experiment. A Tagging Cheat Sheet is on the following page.

NextBio uses proprietary rank-based statistics to compute associations between the data you import and all other experimental data. In that way, you can place your experimental results within the context of the world's experiments to validate your study, discover novel associations and trends, and design new experiments.

Tagging Concepts

Tagging Cheat Sheet

Tags associate terms from biomedical ontologies with studies published to NextBio

Major Tag Categories	
Biosource	(e.g. primary tissue, MCF7 cell line or cell line [for non-ATCC cell lines])
Biodesign	(e.g. disease vs. normal)
Tissue	(e.g. <i>liver, lung</i>)
Disease	(e.g. Alzheimer's disease)
Compound	(e.g. Aspirin)
Gene	(e.g. <i>ESR1</i>)
Genemode	(e.g. Gene knockdown)
Biogroup	(e.g. myoblast differentiation)

Biosource

Blood fraction
Cell culture, primary
Cell line (provide specific cell line name if available)
Cells, primary
Embryo
Laser capture microdissection
Primary tissue - FFPE (formalin-fixed, paraffin-embedded
Primary tissue - fresh or fresh-frozen
PBMCs
Whole blood
Whole body
Whole organ

Biodesign
circadian time course
developmental time course
disease resistant vs. susceptible
disease vs. disease
disease vs. normal
drug dose response
drug resistant vs. sensitive
mutant vs. mutant
mutant vs. wildtype
normal vs. normal
time course
treated vs. control
treatment vs. treatment

Tissue

Define the most specific tissue/organ/cell type used as a sample for the experiment, vocabulary based on Foundation Model of Anatomy (FMA).

Disease

Assign only where applicable, vocabulary is based on a modified curated version of SNOMEDCT.

Compound

Assign name of compound used. If it's a custom compound, be sure to specify the correct Biodesign tag to indicate that a treatment was applied.

Gene

Assigned when a gene in a given sample was modified or served as the key differentiating marker between experimental groups (e.g. ER+ vs. ER- breast cancer).

Biogroup

Biogroups consist of sets of genes related by function and should only be used as tags when it's appropriate and when no other vocabulary above provides relevant terminology.

If you've tagged with a Gene or Protein Treatment , then add a Genemode Tag:

Genemode

Abnormal gene function
Cell marker (or marker gene)
Conditional expression (or inducible expression)
Gene amplification (or gene duplication)
Gene deficiency
Gene dominant-negative overexpression
Gene Insertion
Gene Inversion
Gene knockdown (or gene silencing or siRNA knockdown)
Gene knockout (or null mutant or gene deletion)
Gene mutation (or point mutation)
Gene overexpression (or transgenic or knock-in)
Protein treatment

My NextBio Functions

(profiles, bookmarks, studies and account)

A pioneering goal of NextBio is to 'democratize' data, putting researchers in touch with results that can impact the success of their projects broadly across an organization. Toward this, concepts in 'social networking' and 'collective intelligence' have been developed for importing data, sharing with colleagues, saving key query results, and communicating interesting details.

My Profiles document a user's background, projects and publications, so others can reach out to collaborate with professionals in their organization. The more information one adds to their Profile will increase their value to others searching for expertise.

My Inbox is where messages are composed and stored to and from colleagues.

My Contacts is used to find, invite and maintain contacts for a user's personal online scientific community.

My Projects is where communities are developed around data of common interest. Projects are comprised of Studies and can be shared with any number of special interest Groups.

My Studies is where users conveniently store imported data, where they can be edited, correlated to other studies and shared with others.

My Groups is where users collaborate and communicate with a small group of people or a large number of users with similar research objectives. Upon Group creation, Projects are shared that contain specific Studies. Access controls are flexibly set by Group Founders.

My Bookmarks is a storage location where important findings can be saved for future reference and emailed to other NextBio Users, so they can immediately see your discoveries.

My Account is where passwords can be changed and the number of search results per page can be modified.

My Privacy is where users control who can see their profile at an Enterprise.

Collaboration & Data Sharing Using Libraries, Projects and Groups

A more detailed document is available upon request.

Combining NextBio's Project and Group functionality offers enterprise users a simple and powerful way to collaborate and share studies of interest with other users. Data sharing occurs at the project level. In order to create focused collections of data, Projects can contain multiple studies selected from one's own, one's enterprise, those shared with you by others and public domain studies. As new Studies are added to a Project already shared with others, they will automatically inherit access to the newly added Studies.

The diagram below outlines the flow of study sharing within NextBio. In this example a user's "Rat toxicity" study can be added to multiple Projects (1 & 2), which in turn can be shared with multiple Groups using different access privileges. As you add more Studies to Project 1 and 2 all users in Groups 1, 2 and 3 will automatically inherit access to the Studies. Studies may also be added to projects created by others as long as this permission has been granted using the group sharing mechanism.

Studies can be added to Projects in two ways:

- 1. From the Study Inspector's "Overview" page
- 2. From the Project Inspector's "Studies" page

Study Inspector can be accessed in different ways – by clicking on "Study Details" link on the query results page or by following the Study links from the Library or Project Inspector pages. A blue link "add to project" will enable you add a study into an existing project. If you want to create a new Project you can go to the "Projects" tab of "my nextbio" and select the "create a new project" option.

Project Inspector can be accessed from the "my nextbio/projects" page by selecting a specific project of interest. Single or multiple studies can then be selected and shared using the "add to another project" button or by selecting the sharing icon to the right of each study.

Project Permission Types

All project sharing occurs at the Group level. Within "my nextbio/projects" tab you can select projects that you want to share with other groups. Permissions are applied at the project level. There are two types of permissions:

- 1. Read Users can access the content of the project, but can't add new studies to it
- 2. Add/Read Users can access the content of the project, as well as add new studies to it

NextBio Libraries and Enterprise Administrators

Administrators control projects and project permissions from within the Enterprise Library which can subsequently be accessed by all users within an organization. Importantly, Studies within an Enterprise Library are used in advanced meta-categorization computations, while those in individual User Libraries are not.

Currently, the basic settings for Enterprise Administrators are controlled by the NextBio Administrator. The NextBio admin can quickly set up projects within the enterprise library and can assign permissions for users to allow them to import data or share data within the Enterprise Library. Note: Within the next few weeks a separate NextBio Administration module will be released. This new module will enable NextBio Enterprise Administrators to define and manage security settings, enterprise library projects, permissions and many other system parameters.

NextBio Libraries are used to browse Public studies or organize, edit and browse your organization's internal data. There are three Library types:

NextBio Public Library contains all public data studies organized into high level projects allowing navigation through all the NextBio public content. You can pick Studies or Biosets of interest and set up Advanced Queries or just browse through available content. Studies and Biosets in the Public Library cannot be edited.

Company Enterprise Library contains studies and projects proprietary to your specific organization. Only users within your company have permission to access it. In order to move data from your private project into this library with organization-wide access users have to have special Administrator permission.

Company User Library hosts your own private Studies. Only you can access these unless you have added them to specified Projects and Groups. When you import your data this is the default library to which your data is saved. If you would like to move your data to the organization-wide Enterprise Library providing access for all Enterprise users discuss it with your NextBio Administrator.

Essentials of Literature Search in NextBio

NextBio indexes over 18 million abstracts from the public domain. For literature search, NextBio uses a number of heuristics, including:

- an extensive ontology with relationships between terms and synonyms;
- a customized domain-specific stop word list and analyzer that emphasizes ontology terms;
- the authority of the journal where the paper was published; and
- the date of publication

Embedded hyperlinks to key terms in the citation are semantically linked to NextBio search allowing one to jump out from the citation to search results across the entire NextBio repository. For instance, read what authors say about a gene, then instantly find real experimental data related to its expression across the entire repository. NextBio analyzes literature and clinical trials using all of its ontologies and synonyms, so we are able to, for instance, connect any two trials even though they use different synonyms for the same compound.

Literature Search Examples

experiments(12) literature(45,891) clinical trials(1,187) full text(26,375) more		Literature
by relevance <u>by date</u> <u>show fil</u>	er	
individual publication results for: tamoxifen		
related terms: all affiliation author biogroup compound disease gene tissue ⑦ analyze: 50 200 1000 results	•	Filters and Depth
Sizes of the terms below reflect their relevance to your search. Click on a term to refine your search.	7	
adduct adverse effects anastrozole apoptosis Bowel breast cancer breast tumors CCND1 CDK10		
celecoxib CYP19A1 CYP2D6 DNA ductal carcinoma in situ endometrial cancer endometrium ERBB2 ESR1 ESRRG estradiol eStrogen estrogen receptor exemestane heart disease letrozole liver P-1 PAX2 phosphorytation plasme protein kinase C guinone retroperitoneal fibrosis RRAS2 SRC STAT3 stroke		Tag Cloud with
tamoxifen TP53 tumours		interactive terms
45,891 publications		
Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. <u>full text</u> Antoni Hurtado, Kelly A Holmes, Timothy R Geistlinger, Jain R Hutcheson, Robert I Nicholson, Myles Brown, Jie Jiang, William J Hov	at,	
Simak Ali, Jason S Carroll Crosstalk between the cestrogen receptor (ER) and ERBB2/HER-2 pathways has long been implicated in breast cancer aetiology and		Citations:
drug response, yet no direct connection at a transcriptional level has been shown. Here we show that oestrogen-ER and tamoxifen-E. Nature, 2008 Dec 4	· /_	Select title to view
Tamoxifen for the prevention of breast cancer: late results of the Italian Randomized Tamoxifen Prevention Trial		interactive
among women with hysterectomy. <u>Full text</u>		abstract as shown
Sacchini, Roberto Travaglini, Giuseppe D'Aiuto,	4	below
BACKGROUND, initial lingings of the tallian Randomized Tarrixateh Prevention Thal found to reduction in risk of breast cancer with tamoxifen use, whereas the National Surgical Adjuvant Breast and Bowel Project Breast Cancer Prevention Trial showed that tam… Journal of the National Cancer Institute, 2007 May 2]

article > Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis.

H Wu, Y Chen, J Liang, B Shi, G Wu, Y Zhang, D Wang, R Li, X Yi, H Zhang, L Sun, Y Shang

Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100083, China.

Nature 2005 Dec 15 PMID: 16355216

related terms: all | biogroup | compound | disease | gene 💿

cell proliferation PAX2 Tamoxifen breast cancer

abstract

abstract Tamoxifen, a selective oestrogen receptor modulator, has been used in the treatment of all stages of hormone-responsive breast cancer. However, tamoxifen shows partial oestrogenic activity in the uterus and its use has been associated with an increased incidence of endometrial cancer. The molecular explanation for these observations is not known. Here we show that tamoxifen and oestrogen have distinct but overlapping target gene profiles. Among the overlapping target genes, we identify a paired-box gene, PAX2, that is crucially involved in cell proliferation and carcinogenesis in the endometrium. Our experiments show that PAX2 is activated by oestrogen and tamoxifen in endometrial carcinomas but not in normal endometrium, and that this patienting is carcinotated with expercisived hypermetry. activation is associated with cancer-linked hypomethylation of the PAX2 promoter.

citation

H Wu, Y Chen, J Liang, B Shi, G Wu, Y Zhang, D Wang, R Li, X Yi, H Zhang, L Sun, Y Shang. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. *Nature*. 2005 Dec 15;438(7070):981-7

Essentials of Clinical Trials search in NextBio

NextBio indexes over 56,000 clinical trials documented in the public domain via <u>www.ClinicalTrials.gov</u>. A search for tamoxifen clinical trials is shown. The Tag Cloud highlights a list of relevant terms extracted from analyzing the results. Tags are arranged alphabetically, larger font size is used to denote more relevant terms, those that are cited in more trials. Individual trials are listed below the tag cloud. Selecting a trial title will open trial details, as shown in the second screenshot.

experiments(12) literature(45,891) clinical trials(1,187) full text(26,375) more	Clinical Trial selected
by relevance by date show hiter	
Individual clinical trial results for: tamoxiten	
related terms: all biogroup compound disease gene sponsor tissue () analyze: 50 200 1000 results ()	Filters and Depth
Sizes of the terms below reflect their relevance to your search. Click on a term to refine your search.	7
amyotrophic lateral scierosis anastrozole ARIMIDEX bilirubin Bipolar Disorder bladder cancer Bortezonib	
DICASI CATICCI carcinoma in situ. Casodex. Central Nervous System creatinine cyclophosphamide CYP2D6	Tag Cloud with
fulvestrant iressa letrozole liver liver cancer methotrexate Neoplasms NoIVadex ovarian cancer PGR	interactive terms
platelet protein kinase C Raloxifene skin cancer stage I stage II tamoxifen Tamoxifen Citrate	
tumors	
Tamoxifen Study	
status: Completed conditions: Cardiousseular Diseases : Caranam Diseases : Heart Diseases : Humatansian : Museardial Joshamia	
interventions: tamoxifen	
last updated: 2005 Jun 23 sponsor: National Heart Lung and Blood Institute (NHLBI)	
similar trials	
Tamoxifen Therapy in Amyotrophic Lateral Sclerosis [ALS]	
status: Completed conditions: Amotrophic Lateral Scienceis (ALS)	
interventions: Tamoxifen	
last updated: 2008 Aug 14 sponsor: University of Wisconsin, Madison	
similar trials	
Evaluation of the Association Between CYP2D6 Genetic Polymorphisms and the Treatment Effect of Tamoxifen	
status: Recruiting	
interventions: Tamoxifen	
last updated: 2007 Sep 19 senarcor - National Cancer Center Vorea	1
similar trials	Individual Trials
	Select title to view
Tamoxifen-MRI Study	interactive details
status: Completed	as shown below
interventions: Tamoxifen	
last updated: 2007 Jun 20 seneses - University of Pennsylvania	
similar trials	
Examination of Tamoxifen in Acute Mania in Patients With Bipolar I Disorder	
status: Completed conditions: Bipolar Disorder	
interventions: Tamoxifen	
last updated: 2008 May 21 sponsor: National Institute of Mental Health (NIMH)	
similar trials	
Tamoxifen in the Prevention of Breast Cancer in Hodgkin's Disease Survivors	
status. Active, not recruiting conditions: Hodgkin's Disease ; Breast Cancer	
interventions: Tamoxifen	
sponsor: Dana-Farber Cancer Institute	
similar trials	

Rich details and concept term hyperlinks complement information in NextBio literature and experiments.

clinical trial > Evaluation of the Association Between CYP2D6 Genetic Polymorphisms and the Treatment Effect of Tamoxifen See similar clinical trials »

related terms: all | compound | disease | gene | tissue 🕐 Sizes of the terms below reflect their relevance to your search.

albumin AST basal cell carcinoma bilirubin breast cancer creatinine CYP2D6 ESR1 Megace PGR plasma platelet pleural fluid stage IV **tamoxifen**

purpose Map Satellite Hybrid Primary objectives of this study is to evaluate the effects of CYP2D6 genotypes on time to progression after tamovafen treatment in pre- or opstrenopausal women with matastatic breast cancer. Furthermore, we will evaluate the effects of CYP2D6 genotypes on clinical benefit and response duration to tamovifer administration in pre- or postmenopausal women with metastatic breast cancer and also evaluate the effects of CYP2D6 genotypes on the steady state plasma concentration of tamovifen and its metabolites \downarrow + status Recruiting conditions Breast Cancer Metastatic interventions Tamoxifer Google ap data ©2009/E6ropa^rF8thn phase Phase 2

click on markers to display additional information

study type

study design Treatment, Non-Randomized, Open Label, Uncontrolled, Single Group Assignment, Efficacy Study

official title A Clinical Study for the Evaluation of the Association Between CYP2D6 Genetic Polymorphisms and the Treatment Effect of Tamoxifen in Patients With Metastatic Breast Cancer

further study details (as provided by National Cancer Center, Korea)

enroliment 32

eligibility

ages eligible for study 18 Years and older

genders eligible for study Female

criteria Inclusion Criteria:

- Histologically or cytologically diagnosed stage IV or recurrent breast cancer patients according to American Joint Committee on Cancer (AJCC)
- · Positive estrogen receptor or Positive progesterone receptor Females at least 18 years of age.
- Prior radiation therapy is allowed as long as the irradiated area is not the only source of measurable disease
- Prior hormone therapy less than 2.
- No history of Megace medication for recent 28 days
- · Performance status of 0, 1 and 2 on the ECOG criteria
- Clinically measurable disease, defined as bidimensionally measurable lesions with clearly defined margins on x-ray, CT scan, MRI or physical examination. Lesions serving as measurable disease must be at east 1 cm by 1 cm, as defined by x-ray, CT scan, MRI, or physical examination
- Bone only or pleural fluid only disease is included as long as evaluation for clinical benefit is possible
- · Estimated life expectancy of at least 12 weeks
- Compliant patient who can be followed-up adequately.
- Adequate hematologic (WBC count 3,000/mm3, platelet count 100,000/mm3), hepatic (bilirubin level 1.8 mg/dL, AST, ALT 1.5xULN, albumin 2.5 g/dL), and renal (creatinine concentration 1.5 mg/dL) function.

Childbearing women should use non-hormonal contraceptive method

- Exclusion Criteria:
- Active or uncontrolled infection.
- Second primary malignancy (except in situ carcinoma of the cervix or adequately treated basal cell carcinoma of the skin or prior malignancy treated more than 5 years ago without recurrence).

contacts and locations

Please refer to this study by its ClinicalTrials.gov identifier: NCT00532454

contacts Jungsi Ro, MD, PhD 82-31-920-1610 jungsro@ncc.re.kr locations Korea, Republic of, Gyeonggi-do - National Cancer Center other: Recentifient

status: Recruiting facility: 809 Madu1-dong, Ilsandong-gu, Goyang-si, Gyeongg<mark>i</mark>-do, Korea, Republic of, 410-769

sponsors and collaborators

National Cancer Center, Korea

investigators

Principal Investigator: Jungsil Ro, MD, PhD National Cancer Center, Korea

more information

first received September 19, 2007

last updated September 19, 2007

ClinicalTrials.gov Identifier NCT00532454

health authority Republic of Korea: Institutional Review Board

Essentials of NextBio Integration via APIs

As noted in the section Essentials of NextBio Enterprise Domain, Enterprise customers can access APIs and work with our Engineering Team to:

- Provide results of NextBio search within internal apps
- Provide raw/processed data feeds to internal apps/DBs

Search API - Enables data in NextBio to be searchable via a corporate portal or search engine. For instance, a gene search from an internal application/portal links with pertinent results from NextBio will be displayed along with results from internal data.

Data Import API - Automates the uploading of data via a web service or from a secure ftp location. There is no limit to the amount of data that an enterprise can upload.

Autocomplete API - can be included as a service within internal applications as a means to standardize annotations and assists in tag definition when engaging the bulk import process.

Single Sign-On - Seamless access for all Enterprise users without signing-in or registration. User identity is automatically recognized so they could take advantage of personalization features within NextBio.

NextBio Integration Architecture

Supported Platforms

Platform name (77 total)	Example Identifier
Affymetrix GeneChip C. elegans Genome Array	171720_x_at
Affymetrix GeneChip Drosophila Genome 1.0 Array	141200_at
Affymetrix GeneChip Drosophila Genome 2.0 Array	1616608_a_at
Affymetrix GeneChip Human	AA000993_at
Affymetrix GeneChip Human Cancer HC-G110	100_g_at
Affymetrix GeneChip Human Full Length HuGeneFL	A28102_at
Affymetrix GeneChip Human HG-Focus Target Array	1007_s_at
Affymetrix GeneChip Human HG_U133 Plus 2.0	1007_s_at
Affymetrix GeneChip Human HG_U133 Set	1007_s_at
Affymetrix GeneChip Human HG_U133A version [1 or 2]	117_at
Affymetrix GeneChip Human HG_U95A version [1 or 2]	32739_at
Affymetrix GeneChip Human HG_U95A-E version [1 or 2]	1000_at
Affymetrix GeneChip Human Muscle Chip	1001_at
Affymetrix GeneChip Human X3P	1053_3p_at
Affymetrix GeneChip Mouse GNF1M	gnf1m00001_at
Affymetrix GeneChip Mouse MG_430 2.0	1417246_at
Affymetrix GeneChip Mouse MG_430A 2.0	1417246_at
Affymetrix GeneChip Mouse MG_6500A	Msa.14400.0_at
Affymetrix GeneChip Mouse MG_U74	100001_at
Affymetrix GeneChip Mouse MG_U74A	100001_at
Affymetrix GeneChip Mouse Mu11K	aa000148_s_at
Affymetrix GeneChip Rat RAE230 2.0	1368984_at
Affymetrix GeneChip Rat RAE230A	1367452_at
Affymetrix GeneChip Rat RG-U34	A01157cds_s_at
Affymetrix GeneChip Rat RG-U34A	A01157cds_s_at
Affymetrix GeneChip Rat RN-U34	A03913cds_s_at
Affymetrix GeneChip Rat RT-U34	AA108277_at
Affymetrix GeneChip Yeast Genome S98 Array YG-S98	10000_at
Agilent Human 1A G4110A	A_23_P38816
Agilent Human 1A V2 G4110B	A_23_P7262
Agilent Human 1B G4111A	A_32_P838055
Agilent Human CGH 44A G4410A	A_14_P132831
Agilent Human CGH 44B G4410B	A_14_P132831

Agilent Human Whole Genome G4112A/G4112F	A_24_P475014
Agilent Mouse CGH 44A G4414A	A_53_P168061
Agilent Mouse Development 44K G2519A	A_66_P128131
Agilent Mouse Development G4120A	A_65_P01715
Agilent Mouse G4121A	A_51_P421525
Agilent Mouse Whole Genome G4122A	A_52_P756921
Agilent Rat G4130A	A_43_P22352
Agilent Rat V2 G4130B	A_43_P22352
Agilent Rat Whole Genome G4131A/G4131F	A_44_P292407
Agilent Rhesus Monkey Genome G2519F	A_01_P000448
Custom C. elegans	171590
Custom D. melanogaster	30970
Custom Human	1
Custom Mouse	11287
Custom Rat	24151
Custom Saccharomyces cerevisiae	850287
GE Healthcare CodeLink ADME Rat 16-Assay	GE1073270
GE Healthcare CodeLink Human Whole Genome	GE479851
GE Healthcare CodeLink Mouse Whole Genome	GE1557164
GE Healthcare CodeLink Rat Whole Genome	GE1100063
GE Healthcare CodeLink UniSet Human 20K	GE85986
GE Healthcare CodeLink UniSet Human I	GE52942
GE Healthcare CodeLink UniSet Mouse 20K	GE110794
GE Healthcare CodeLink UniSet Mouse I	GE36943
GE Healthcare CodeLink UniSet Rat I	GE12207
Illumina Sentrix Human-6 BeadChip	GI_10047089-S
Illumina Sentrix Human-6 v2	4760445
Illumina Sentrix Human-6 v2 (Target ID)	ILMN_89282
Illumina Sentrix HumanRef-8 BeadChip	GI_10047089-S
Illumina Sentrix HumanRef-8 V2	630309
Illumina Sentrix HumanRef-8 V2 (Target ID)	ILMN_25544
Illumina Sentrix HumanRef-8RD BeadChip	GI_10047089-S
Illumina Sentrix Mouse-6 v1	105290026
Illumina Sentrix Mouse-6 v1 (Target ID)	GI_38090455-S
Illumina Sentrix Mouse-6 v1_1	105290026
Illumina Sentrix Mouse-6 v1_1 (Target ID)	GI_38090455-S
Illumina Sentrix MouseRef-8 v1	1450041

Illumina Sentrix MouseRef-8 v1 (Target ID)	scl00227525.1_330-S
Illumina Sentrix MouseRef-8 v1_1	1450041
Illumina Sentrix MouseRef-8 v1_1 (Target ID)	scl00227525.1_330-S
Illumina Sentrix RatRef-12 v1	3170341
Illumina Sentrix RatRef-12 v1 (Target ID)	ILMN_63264
Trex_IAS_RGI3_v	RGICJ31

* Additional platforms are being supported on an ongoing basis as the corresponding data from public and proprietary sources becomes available. If a custom platform is being used, our Engineering Team can be engaged to develop automatic recognition and mapping of those IDs into the system.

THE LIFE SCIENCE SEARCH ENGINE.