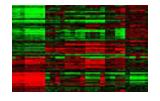
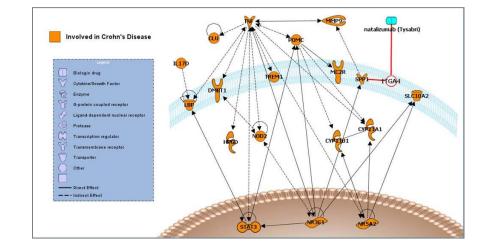
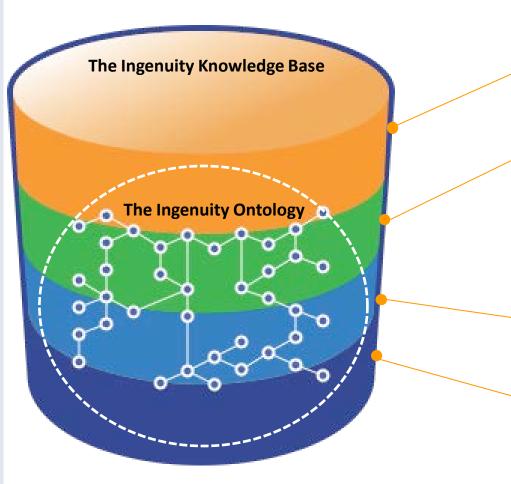
Yvonne Trulin Account Manager ytrulin@ingenuity.com

Darryl Gietzen, Ph.D. Sr. Application Scientist dgietzen@ingenuity.com Maximizing the Biological Interpretation of Gene, Transcript & Protein Expression Data with IPA (Ingenuity Pathway Analysis) 00000


QIAGEN


Biological Interpretation Based on Assimilating Published Experimental Findings

	A	В	С			
1	AOC3					
2	CCL19					
3	CD58					
4	CXCL12					
5	ITK					
6	MYD88					
7	PLAU					
8	RAP1GAP					
9	RASGRP1					
10	SPP1					
11	TGFB1					
12	THBS1					
13	TLR4					
14	VCAM1					

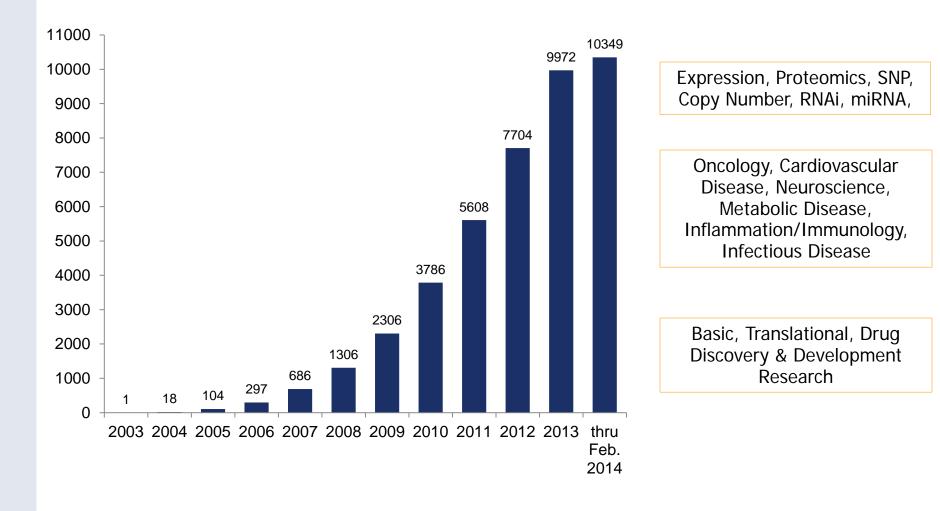

IPA

Ingenuity Content

Ingenuity Findings

Ingenuity® Expert Findings – Manually curated Findings that are reviewed, from the full-text, rich with contextual details, and are derived from top journals.

Ingenuity® ExpertAssist Findings –

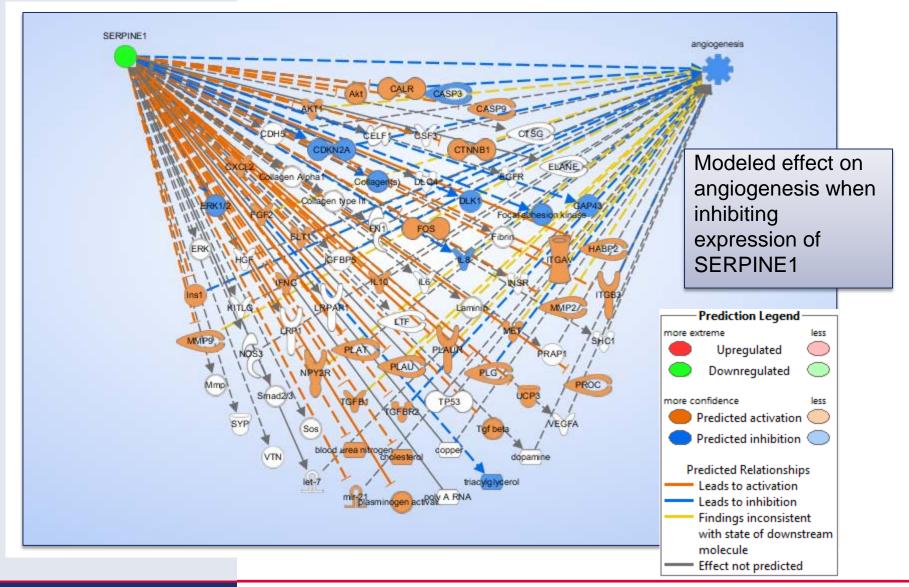

Automated text Findings that are reviewed, from abstracts, timely, and cover a broad range of publications.

Ingenuity Modeled Knowledge

Ingenuity[®] Expert Knowledge – Content we model such as pathways, toxicity lists, etc.

Ingenuity[®] Supported Third Party

Information – Content areas include Protein-Protein, miRNA, biomarker, clinical trial information, and others Peer-reviewed publications citing QIAGEN's Ingenuity products



How can IPA help you?

- Deep pathway understanding of a single gene/protein
 - □ Drug/therapeutic target discovery
- Biological understanding of large data sets
 - Differential gene expression, array and RNAseq (transcriptomics)
 - Differential protein expression (proteomics)
 - □ Protein phosphorylation
 - □ Methylation
 - Metabolomics
 - □ miRNA expression
 - □ Chip-on-chip / chip seq
 - Gene List
 - siRNA screening

SERPINE1 downstream effect modeling

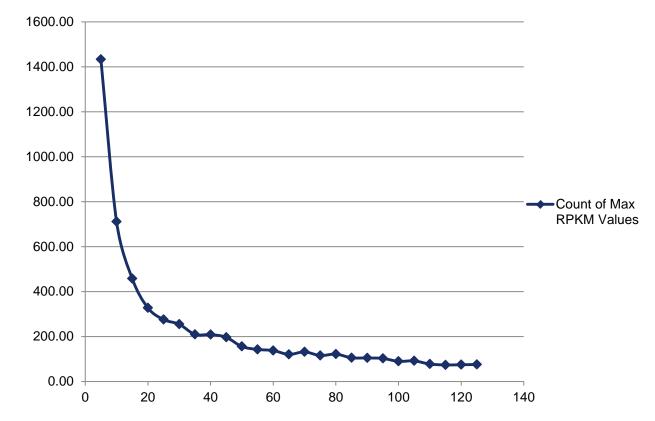
How can IPA help you?

- Deep pathway understanding of a single gene/protein
 - □ Drug/therapeutic target discovery
- Biological understanding of large data sets
 - Differential gene expression, array and RNAseq (transcriptomics)
 - Differential protein expression (proteomics)
 - □ Protein phosphorylation
 - □ Methylation
 - Metabolomics
 - miRNA expression
 - □ Chip-on-chip / chip seq
 - Gene List
 - siRNA screening

Gene/Protein Expression Analysis

- Pathway Analysis
 - Predicts pathways that are changing based on gene expression
 - □ New tools to predict directional effects on the pathway (MAP overlay tool)
- Upstream Regulator Analysis
 - Predicts what regulators caused changes in gene expression
 - Predicts directional state of regulator
 - □ Creates de novo pathways based on upstream regulators (Mechanistic Networks)
- Diseases and Functions Analysis
 - Predicts effected biology (cellular processes, biological functions) based on gene expression and predicts directional change on that effect
 - "Increase in cell cycle"
 - "Decrease in apoptosis"
- Regulator Effects
 - Models pathway interactions from predicted upstream regulators, through differentially expressed genes, to biological processes
- Networks
 - Predicts non-directional gene interaction map

Data Upload Format Examples


Identifier List

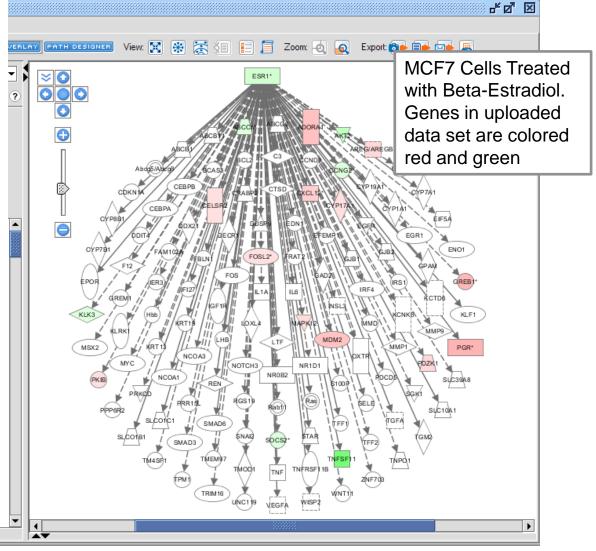
Α

-	A								
1 1		+differentia	l expression						
2	IM 130786	A	B						
	IR 015380		U						
4 N	IM_138932		Log2Ratio						
5 N	IM_014576	130786	0.14						
6 N	IM_138933	015380	-0.99	Teignific	ance stat				
7	IM_000014	138932	-0.02						
8 N	IR_026971	014576	-0.02	B	С	+l	RPKM		
_	IM_144670	138933	0.02	1		(n	naximum	RPKM be	otween
_	IM_001080438	000014	_1 79	Log2Ratio	p-value 8.68E-01	•			
_	IM_017436	026971	-0.67	0.14	2.24E-01		•		on and cont
	IM_016161	_144670	-5.96 32	-0.99	9.83E-01	re	commen	ded for RI	NAseq)
_	IM_015665	001080438	-1.97 76	-0.02	9.85E-01	4	В	С	D
4.44	Mar 1000000000000000000000000000000000000	J_017436	-1.09 33	0.02	9.79E-01				Intensity/
		M_016161	2.02	-4.79	1.02E-01		Log2Ratio	p-value	RPKM/FPKM
		M_015665	-0.27	-0.67	6.17E-01	86	0.14	8.68E-01	2931.69
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 INIVI_144070	-5.96	1.30E-01	30	-0.99	2.24E-01	1649.26	
			10 NM 001080438	-1.97	3.47E-01	32	-0.02	9.83E-01	1.67
			11 NM 017436	-1.09	5.02E-01	76	-0.02	9.85E-01	1.77
			12 NM 016161	2.02	5.97E-02	33	0.02	9.79E-01	1.83
			13 NM 015665	-0.27	5.68E-01	14	-4.79	1.02E-01	239.75
				amon and a	***** ***E.AO		-0.67	6.17E-01	213.79
					9 NM_144	670	-5.96	1.30E-01	610.64
					10 NM_001		-1.97	3.47E-01	3.91
					11 NM_017		-1.09	5.02E-01	6186.83
					12 NM_016		2.02	5.97E-02	149.85
					13 NM 015	665	-0.27	5.68E-01	13330.34

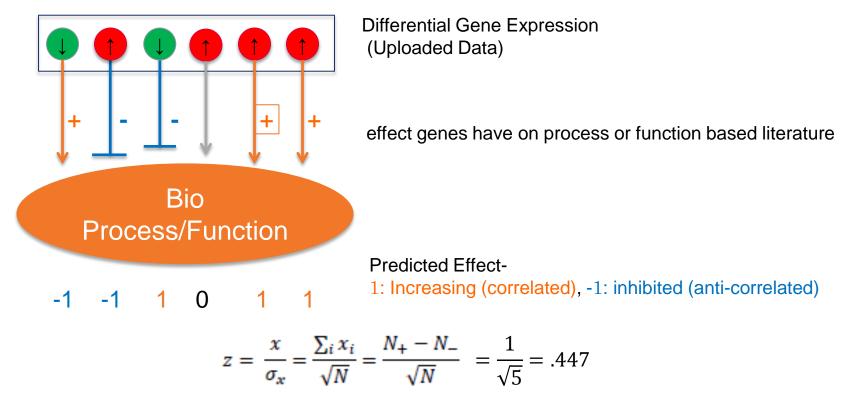
Typical Distribution of RPKM Values in RNAseq Data

- RNAseq measurements often result in many significant differential fold changes at low absolute transcript expression levels
- Including the maximum RPKM value of your experimental condition and control allows for later filtering on absolute expression value in addition to fold change and p-value

Uploading Multiple Observations

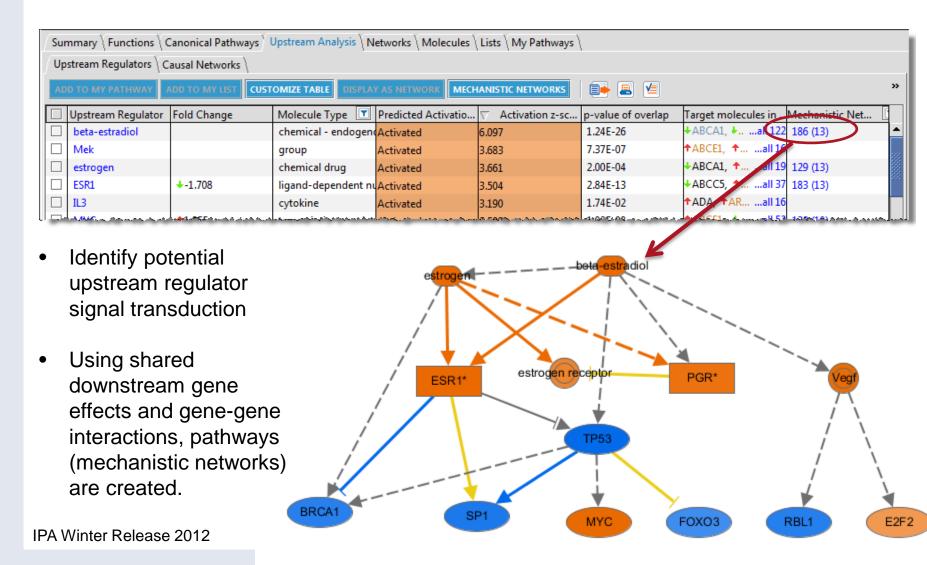

- Multiple experimental differential expressions can be grouped into a single spreadsheet and upload
 - Nice-to-have if you are comparing a series of expression values such as a timecourse (up to 20 observations)
 - □ Be sure and name your observations at the time of upload in IPA

		Observation 1			Observation 2			
					l			
					Ŷ			
	Α	В	С	D	E	F	G	
		12 Hour	12 Hour	12 Hour	24 Hour	24 Hour	24 Hour	
1	ID	Log2Ratio	p-value	Intensity/	Log2Ratio	p-value	Intensity/	
2	NM_130786	0.14	8.68E-01	2931.69	-0.83	4.65E-01	4791.17	
3	NR_015380	-0.99	2.24E-01	1649.26	0.72	5.32E-01	198.72	
4	NM_138932	-0.02	9.83E-01	1.67	1.58	8.31E-03	7879.80	
5	NM_014576	-0.02	9.85E-01	1.77	-0.77	1.26E-02	46757.06	
6	NM_138933	0.02	9.79E-01	1.83	0.90	2.03E-02	26426.36	
7	NM_000014	-4.79	1.02E-01	239.75	-0.01	9.82E-01	2117.73	
8	NR_026971	-0.67	6.17E-01	213.79	0.12	8.64E-01	14076.24	
9	NM_144670	-5.96	1.30E-01	610.64	-1.62	1.46E-01	31.85	
10	NM_001080438	-1.97	3.47E-01	3.91	0.12	8.25E-01	10491.96	
11	NM_017436	-1.09	5.02E-01	6186.83	2.02	4.44E-01	14788.50	
12	NM_016161	2.02	5.97E-02	149.85	-0.57	1.09E-01	273101.00	
13	NM_015665	-0.27	5.68E-01	13330.34	0.36	4.87E-01	11876.00	
14	VIW 003008	1 / 2	1 03⊏ 02	22828 15	0 17	7 /8= 01	3330 38	


Identify likely upstream regulators and their activity state

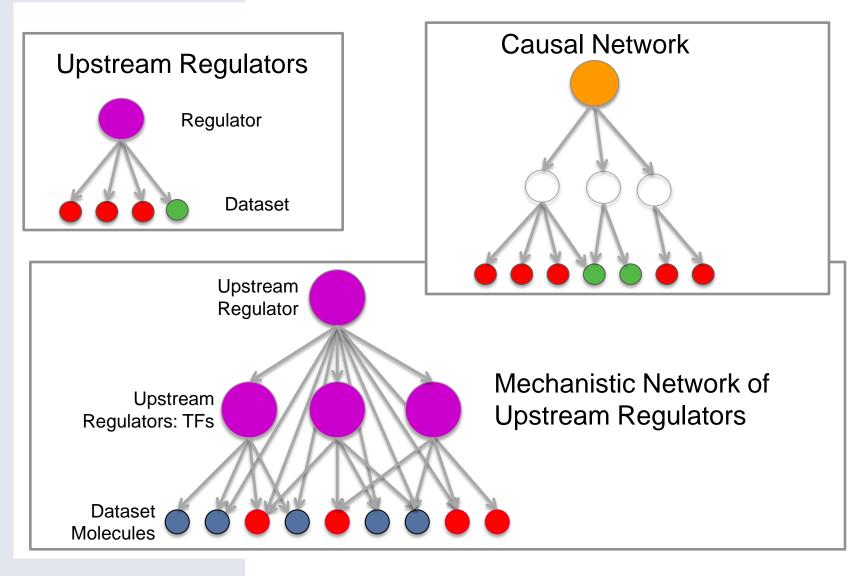
- Use published experimental molecular interactions to identify upstream regulators
- Identify upstream regulators by determining gene enrichment in downstream genes
- Predict the activity state of regulators by correlating literature reported effects with observed gene expression

Downstream Effect z-score

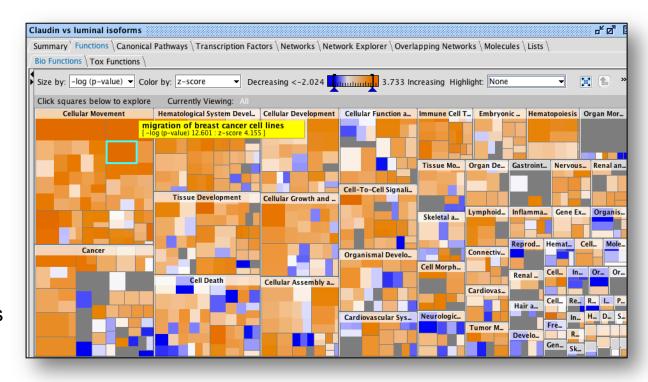


- "z-score" is statistical measure of correlation between relationship direction and gene expression.
- z-score > 2 or < -2 is considered significant

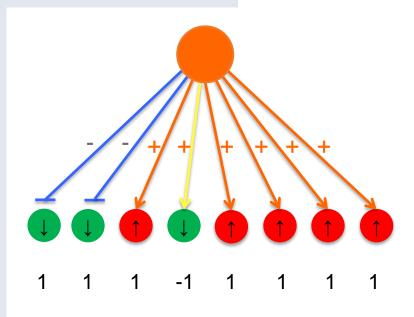
Actual z-score is weighted by relationship, relationship bias, data bias



Create *de novo* pathways of regulators and genes


Single- vs. Mechanistic- vs. Causal Networks Leveraging the network to create more upstream regulators

A novel approach to visualize and predict biological impact of gene expression changes


Identify key biological processes influenced by differentially expressed genes

Understand whether cellular processes are being driven up or down by correlating observed expression with reported experimental gene effects

- Each box represents a biological process or disease
- The size of the box represents gene enrichment
- The color of the box indicates the predicted increase or decrease

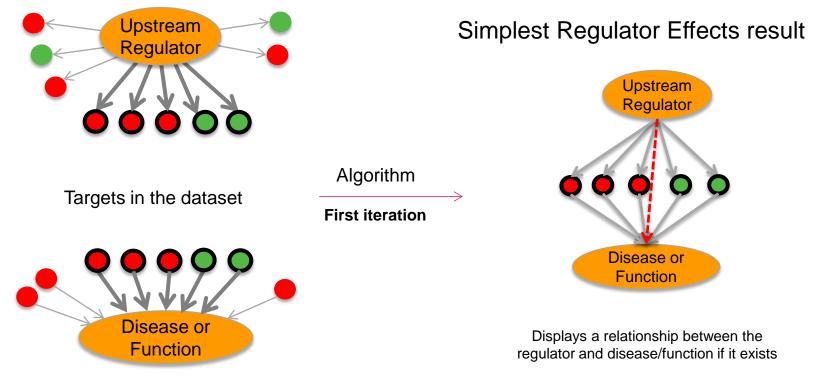
- ← Every possible TF & Upstream Regulator in the Ingenuity Knowledge Base is analyzed
- ← Literature-based effect TF/UR has on downstream genes
- ← Differential Gene Expression (Uploaded Data)
- Predicted activation state of TF/UR:
 1 = Consistent with activation of UR
 - -1 = Consistent with inhibition of UR

$$z = \frac{x}{\sigma_x} = \frac{\sum_i x_i}{\sqrt{N}} = \frac{N_+ - N_-}{\sqrt{N}} = (7-1)/\sqrt{8} = 2.12 \text{ (= predicted activation)}$$

- z-score is a statistical measure of the match between expected relationship direction and observed gene expression
- z-score > 2 or < -2 is considered significant

Note that the actual z-score is weighted by the underlying findings, the relationship bias, and dataset bias

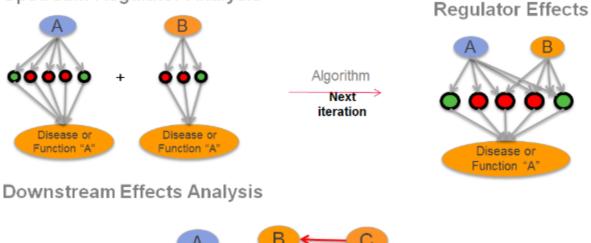
Regulator Effects

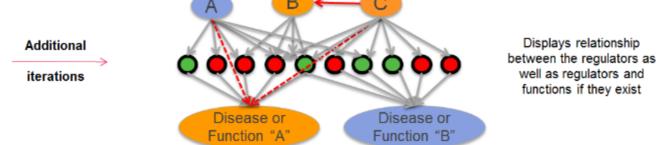

New in IPA Spring 2014 Release (End of March)

Hypothesis for how a phenotype, function or disease is regulated in the dataset by activated or inhibited upstream regulators

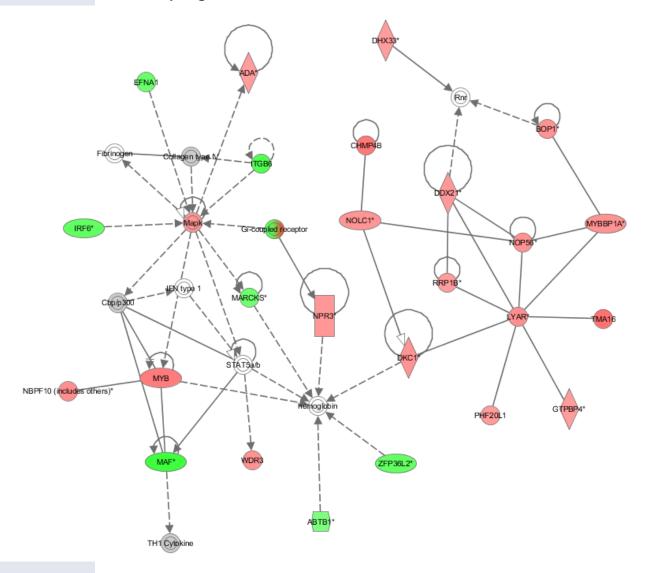
- Explain impact of upstream molecules on downstream biology
- Explain potential mechanism for a phenotype or drug
- Define drug targets
- Discover novel (or confirm known) regulator \rightarrow disease/phenotype/function relationships

Upstream Regulator Analysis


Hypotheses for how activated or inhibited upstream regulators cause downstream effects on biology


Downstream Effects Analysis

Causally consistent networks score higher The algorithm runs iteratively to merge additional regulators with diseases and functions



Networks

.....

QIAGEN

Identifying Molecular Connections within Your Data Set

Gene/Protein Expression Analysis

- Pathway Analysis
 - Predicts pathways that are changing based on gene expression
 - □ New tools to predict directional effects on the pathway (MAP overlay tool)
- Upstream Regulator Analysis
 - Predicts what regulators caused changes in gene expression
 - Predicts directional state of regulator
 - □ Creates de novo pathways based on upstream regulators (Mechanistic Networks)
- Diseases and Functions Analysis
 - Predicts effected biology (cellular processes, biological functions) based on gene expression and predicts directional change on that effect
 - "Increase in cell cycle"
 - "Decrease in apoptosis"
- Regulator Effects
 - Models pathway interactions from predicted upstream regulators, through differentially expressed genes, to biological processes
- Networks
 - Predicts non-directional gene interaction map